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FOREWORD AND CONCLUSIONS
by

Wolfgang Schmidt
Dornier Luftfahrt GmbH
Friedrichshafen
Iederal Republic of Germany

During the past vears the important role of adequate mesh generation for Computational Fluid Dynamics (CFD) has
been fully recognized. Accurate mesh generation has emerged as an indespensible tool in Fuler and/or Navier-Stokes
caleulations. It has been amply demonstrated that the viability of a numerical solution depends directly on the quality of the
mesh and surface representation as measured by its spacing and resolution. Of particular interest is the mesh generation for
complex configurations, such as advanced fighter or transport aireraft, missiles. or space vehicles, where complex geometrtes
and~or complex flowficlds have to be analysed.

There exist numerous reports and proceedings on various methods with many examples such as in References |1] and
|2}. The present AGARD Specialists” Meeting on Mesh Generation has been direcicd tywrds the application of the different
techniques available and the problems encountered if applied to complex cases.

Since two papers could not be given orally, Professor J.Steger agreed to present his paper “Generation of 2-1 Raudy
Firer 2 Hide by Solving Hyperbolic Parnal Ditterential Equations™ and Dr Paul Kutler gave a presentation on “CFD at
NASA AMES". Professor Steger's presentation has been described in detail in References [4]—|6].

The meeting has been structured in five sessions, giving general surveys by papers one and two in session one, four
papers on algebraic grid generation in session two, session three with four papers on block tructured meshes. session four
with six papers on multiblock and/or adaptive meshes. and session five with five papers on unstructured meshes. The final
paper was an invited paper from the Electromagnetic Wave Propagation Panet showing the mutuality between the
computation of electromagnetic wave propagation and CFD, especially in mesh generation.

A detailed evatuation of the material presented has been prepared by the technical evaluator J.Steger. His results are
published under separate cover as AGARD-AR-268 |3].
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AVANT-PROPOS ET CONCLUSIONS

Au cours des derniéres années, I'importance de la génération de maillages adéquats pour I'aérodynamique numérique
(CFD) a été universellement reconnue. La génération de maiilages fideles apparait aujord’hui comme un outil indispensable
pour la résolution des équations d’Euler et/ou de Navier-Stokes. Il a éi¢ amplement démontré que la viabilité des solutions
numériques dépend directement de la qualité de la représentation du maillage et de la surface aérodynamique, telle que
définie par son pas et sa résoluticn. La geénération de maillages pour des configurations complexes, telles que des a€ronefs de
combat ou de transport évolués. des missiles, ou des véhicules spatiaux, impliquant 'analyse de géométries et/ou de champs
d'écoulement complexes, est d'un intérét tout particulier.

Il existe de nombreux rapports et comptes-rendus sur les différentes méthodes, contenant beaucoup d'exemples. tels
que [1f ou {2]. Cette réunion AGARD de spécialistes, sur la génération des maillages. est orientée vers la mise en application
des différentes techniques disponibles et les problemes rencontrés lorsque ces techniques sont appliquées a des cas
complexes.

Deux des conférenciers n‘ayant pas pu participer a la réunion, le Prof. J.Steger a bien voulu accepter de presenter une
communication sur “La génération de grilles tridimensionelles, pour une représentation affinée de la cellule de l'aéronef. par
la résolution d'équations différentielles partielles hyperboliques™ et fe Dr Paul Kutler a présenté une communication sur
“L’aé¢rodynamique numérique (CFD) a NASA AMES™. Une description détaillée de la présentation du Professeur Steger est
donnée réf. |4 et [6].

La réunion a ét¢ organisée en cing séances. selon le programme suivant:

— s¢ance | deux communications servant d'introduction au sujet

— seance 2 guatre communications sur la génération de grilles algébriques
— scance 3 quatre communications sur les maillages structurés par blocs

— scance 4 six communications sur les maillages multiblocs et/ou adaptatifs
— scance § cing communications sur les maillages non structures

La derniere communication, presentée par le Panel sur la propagation des ondes électromagnétiques, a démontré la
relation entre le caleul de fa propagation des ondes ¢lectromagnétiques et le CFD. en particulier pour la géncration des
maillages.

Une evaluanon detaillee des textes presentes a éte realisee par expert en la matiere, J.Steger, et ses conclusions ont ¢té
publices sous la forme du document AGARD-AR-268 |3].
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RECENT DEVELOPMENTS IN GRID GENERATION
by
J.Hiuser and A.Vinckier
Acrothermodynamics Section
ESA — European Space Research and Technology Center
P.O. Box 299, 2200 AG Noordwijk
The Netherlands

ABSTRACT

This paper gives an overview on recent developments in grid generation with emphasis on the results presented
in the proceedings of the Second Intemational Conference in Numerical Grid Generation in Computational
Fluid Mechanics '88. Grid generation is essential for the solution of all kinds of fluid physics problems. It also
reports briefly about the grid generation activities pursued by the authors, mainly to be used for Hermes. It is
particularly important in cases where very different length scales are present, as, for example, in the case of
turbulence, which can be considered as the pacing item in present day fluid physics. The main issue of this
work deals with multi-block grids in 3-D, but unstructured grids are also briefly mentioned. The important
topics in multi-block grid generation are outlined and various approaches to their solution are discussed. The
following main building blocks have been identified: Topology of the grid, that is how neighboring blocks are
identified and what their relative orientation is to each other; patched (nonoverlapping grid that has grid line
continuity only) or matched gnds (grids with slope continuity, i.e. continuous tangent vector); block
decomposition, which has to be automated if hundreds or thousands of blocks are being used; surface grid
generation and analytical description of smooth surfaces to avoid the generation of shocks or expansion fans;
grid point clustering (static grids); grid adaptation (dynamic grids) according to specified gradients or function
values performed either by redistribution or by local enrichment; postprocessing of grids to visualize and to
achieve a specified grid quality at certain point; or along certain lines or planes (interactive process).

1. Introducrion

Before a numerical solution can be computed, a proper grid must be generated around the vehicle or body
of interest. Depending on the physical phenomena during the flight regime, the grid point distribution can vary
substantially. Numericai grid generation therefore demands a great flexibility in distributing grid points within
the solution domain. The goal is to place grid points at locations where the physics is changing to achieve
highest accuracy while only a minimal set of grid points is used. This can be done by using structured grids (a
curvilinear CS (Coordinate System) is defined) or by using an unstructured grid where the neighboring grid
points are identified by a table of nearest neighbors. The most widely used solution technique is the same for
both type of grids -as far as compressible flow is concemed- namely the FV (Finite Volume) technique, which
ensures the conservation of the physical quantities and allows for weak solutions.

In the following a brief discussion of the merits and demerits of structured and unstructured grids is given, and
recommendations are presented when to use either type of grid. However, this is based on a personal view and
there may be ditterent opinions.

2. Structurcd versus Unstructured Grids

Regarding high speed flow past 3-D objects many flow situations can be encountered where the flow in the
vicinity of the body is aligned with the surface. i.e. there is a prevailing flow direction. This is especially the
case in hypersonic flow. The use of a SG (Structured Gridy. alse called body titted or boundary fitted grid.
allows the alignment of the finite FVs in that direction, reculting ‘n locally 1D flow Hence. numerical diffusion
is reduced, i.e. better accuracy is achieved when compared to an UG (Unstructured Grid). Second, SGs can be
made orthogonal at boundaries facilitating the implementation of BCs (Boundary Condition) and alsu
increasing the numerical accuracy at boundaries. Furthermore, orthogonality increases the accuracy when
algebraic turbulence models are employed. In the solution of the N-S (Navier-Stokes) equations, the BL
(Boundary Layer) must be resolved. This demands that the grid is closely wrapped around the body to describe
the physics of the BL (some 32 layers are used in general for SGs or UGs). Here some type of SG is
indispensable. In addition, to describe the surface of the body a structured approach is necessary. The
resolution of the BL leads to large anisotropies in the length scales in the directions along and off the body.
Since the time-step size in an explicit scheme is govemed by the smallest length scale or, in the case of
chemical reacting flow, by the magnitude of the chemical production terms, there will be extremely small time
steps necessary. This behavior is not demanded by accuracy but to retain the stability of the scheme. Thus,
implicit schemes wil! be of advantage. I order to invert the implicit operator, factorization is generally used,
resulting in two factors if LU decomposition (that is factering in the direction of the plus and minus
eigenvalues) is employed or in three factors if the coordinate directions are used. For the unstructured approach
there is no direct way to perform this type of factorization. Moreover, the use of the so called thin layer
approach, that is retaining the viscous terms only in the direction off the body, cannot be used. A reduction of
30% in computer time has been reposted. Since there are no coordinate lines in the UG, this simplification is
not possible. Moreover, the flow solver based on the UG is substantially slower than for the SG. This is due to
the more complicated data structure needed for UGs. Factors of 3 [38] and by some authors of up to 10 |39)
have bee~ given in the literature.

Although it might be thought that CPU time is no longer a critical item with the next generation of computers,
this will not be true if turbulent flows and transition phenomena are to be modeled. Suppose there is a Cray4
that is a 100 times more powerful than the present Cray2 and suppose we need a factor of three more in CPU
time and memory based on 10 Million grid points. This would amount to additional 299 present day Cray2s,
and using 100 words per gridpoint would demand additional 16 Gbytes of memory. Since transition and




turbulence are the driving force for future applications in aerospace, any additional increase in computing
speed and memory has to be used to improve these solution of the physical phenomena.

An important point for the accuracy of the solution is the capability of grid point clustering and solution
adaptation. In general, SGs provide sophisticated means both for clustering and adaptation using redistribution
or local enrichment techniques. A comparison of these two approaches is given in [14] where local enrichment
gives somewhat better results. However, it is much more costly to use. The highest degree of freedom of course
is obtained in UGs. We feel, however, that mesh redistribution is totally adequate for the major part of the flow
situations encountered in extemal flows, especially in aerodynamics. If a very complex wave pattem due to
special physical phenomena evolves, for example, generating dozens of shock waves, then the UG has
advantages [30]. In addition, the coupling of SGs with UGs is possible as has been shown in [17]. Such a grid is
called a hybrid gnd.

Attention should also be given to the use of parallel computers. Massively paratlel systems with several
hundred of processors will soon become available. Here block-structured grids can be very important, since, in
prnncipal, each processor can iterate the solution for each block and then update the boundaries of the
neighboring blocks by passing a message. Overlapping block-structured grids are very well suited for this type
of computer. However, in 3-D, overlaps should be restricted to one face only to avoid the storage of gnid points
that are not active, (see Fig.}). It is important to note that the solution procedure for storage coupled or private
memory machines should allow the application to general geometries, t.e. in the case of multi-block (see
Chap.}) the CP does not have a regular geometry but can be quite tragmented. This poses difficulnes for
machines using the wave concept. First results for general 2-I) geometries are presented in [4].

2 Muln Block versus Smgele Block

If the topology of the SD and the domain in the CP are not of the same order, certain grid line
configurations cannot be realized (see lower part of Fig.1b). Thus a n-fold connected region in the PP should be
mapped onto a n-fold connected region in the CP. This is achieved by using the so called multi-block approach
(Fig 2). A grid can be comprised by matching blocks (see Fig.2) where slope continuity is provided, i.e.
neighboring blocks overlap by one row or one column. Looking at such grids, block-boundaries are not visible,
which is the most suitable case for the flow solver, sirice, of course, the flow solution must not depend on the
blocking of the SD. This can be avoided by the following construction process: first a fairly coarse grid
utilizing the overlapping approach is constructed, and, in a second step, the grid is doubled for selected blocks
only, without changing the positions of the grid points on the coarse mesh. This approach naturally leads to a
local refinement that easily ensures flux conservation and also allows the direct application of the multigrid-
technique. A simpler requirement is to demand grid line continuity only and the next step is to also give up that
feature. which resuits in more freedom in grid generation, but demands substantial efforts in th: Sow solver to
guarantee the conservation of fluxes across block boundaries. The best approach, of course, is depending on the
phiysics that has to be modeled.
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Fig.l1: The upper part of (a) shows an O-type grid which, by a branch cut, can be mapped onto a single
rectangle in the CP. There are situations where an H-type grid (lower part of (a)) is advantageous, e.g. flow
past a cylinder. This grid line configuration cannot be obtained by a branch cut. Using cuts always maps a n-
Jfold connected SD onto a simply connected domain in the CP. Here the idea of multi-block grids is essential in
generating a mapping retaining the connectivity of the original SD. Hence, multiple cuts and multi-blocks are
not equivalent.
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Fig 2 Grid with slope continuaty Eight blocks are necessary if the same number of grid points is required at

neighbhoring edges The multt block idea therefore is to map the SD onto a set of connected rectangles in 2-D or
boves in 3-D The same approach can be used for curved surfaces in 3-D. which can be thought to be patched
or matched by a set of charts forming an atlas where each chart is a manifold, i.e is locally equivalent 10 a

plane surfuce

4 Kev Issues of 3-D Multiblock Grids

i general, geometry data is given by some type of CAD systemn. This data is to be processed to generate
the required surface grid. The surface grid serves as a type of boundary for the volume grid to be constructed.
and thus strongly influences the overall grid quality. The following gives an overview of the key issues in 3-D
multi-block grids. [n Table 1 the complete process for the design of a vehicle of complex geometry is outlined,
starting from the lower left comer. For example, at present, a large amount of time has to be spent to process
the data from e.g . CATIA or Euclid to construct a computational grid for the Hermes Space Plane. In the
following we briefly present the key issucs of 3-D multi-block grid generation. Of course, not all the topics
mentioned below can be treated in depth in this paper. One of the major problems encountered so far is the
large amount of human interaction to first produce a surface grid and the subsequent generation of the multi-
block grid Moreover, the blocking of the grid is not straightforward. Here, some type of knowledge based
system could be useful [ 1) or the technique described in [24] could be employed, which can be considered to be
a major step forward in automating the decomposition of the SD

1 Body Geometry Detimtion and Geometric Modeling
- Censtruction of Coons patches for analynical surface description, or similar technique
- Graphies eduor
iy Surface Grid Generation
- 2-D gad topology
- 2-D multi block gnids on curved surfaces
- direct projection method
generalized 2-D elliptic grnid equations
- database for 2-D) surface patches
- analytical defimition (e g. boady of revolution)
(i) Data Structures for 2-1) and 3-D Gnid Topology (Block Connection)
- interconnection field
- pointer arrays
- Gray Code
(iv)  Gid Generation Technigues
- algebraic
- PDE (Elliptic)
- iterative (SOR etc )
- multignd
- hyperbolic (outer boundary not specihed)
(v)  Grid Point Clustering and Adaptive Grids
- orthogonality
- distance control

- solution adaptation




- local enrichment
(vi) Interactive Grid Generation
(vit) Gnid Visualization
(viity Grid Generation on Parallel Computers
- Storage coupled computers (S 16 Processors)
- Massively parallel systems (MIMD, 2 16 Processors)
(1x)  Expert Systems
- reduction of human interaction
- reduction of tum around time
(x)  Computer Languages for Grid Generation

- 77, C. C++ tor complex data structures

GENERAL 3-D MULTIBLOCK ADAPTIVE GRID GENERATION

SOFTWARE CHANGED
LOCAL -V 1S UALTZAT O N
MODULE CHANGES FILE
1 ¥
OUTPUT CONTROL CONTROL GRID GRID
FUNCTION gummm FUNCTION quuVISUALIZATION gV [ SUALIZAT | O N e
FILE r FILE MODELING FILE MODELING
, S ’ '
4
GEOMETRIC SURFACE SURFACE GRID SURFACE GRID VOLUME GRID VOLUME GRID
MODELING mmmegp DESCRIPTION kg, MODELING gy DESCRIPTION . MODELING s DESCRIPTION eyl
FILE FILE FILE
 Z
2
CROS8 SECTION CONTROL CONTROL PHYSICAL PHYSICAL
DATA FILE b FUNCTION  quumm FUNCTION uuy SOLUTION o SOLUTION g
FILE MODELING FILE MODELING
’ I S
GEOMETRY DATA . SOFTWARE MODULES . Lol - - ,OUIP,lﬂjiEj .
GEOMETRY DATA PROCESSOR
PROCESSOR
GEOMETRIC MODELER SURFACE DESRIPTION FILE
SURFACE GRID MODELER SURFACE GRID DESCRIPTION
} VOLUME GRID MODELER VOLUME GRID DESCRIPTION FILE
GRID VISUAL!ZATION MODELER GRID VISUALIZATION FILE
CAD DATA CONTROL FUNCTION MODELER CHANGED GRID VISUALIZATION FILE
DIRECT LOCAL CHANGER CONTROL FUNCTION FILE

FILE
PHYSICAL SOLUTION MGDELER

CAD DATA FILE
GEOMETRY DATA FILE . _

Table | Flow chart for the flow solution process starting from the CAD data file (lower left corner) using a
maodular approach The outpur file of one module 15 the input file of the follovw e one. similar to the Unix pipe
concept




Fig 3 The upper part shows the cross sections for the Hermes Space Plane. The original tape contains spline
coefficients from CATIA. This information then is processed to obtain the cross sectional curves. Grid points
can be distributed by a user specified weight function, e.g. curvature. It is essential to construct a sn.ooth
surfuce to prevent the generation of shocks or expansion fans. Commercial packages, e.g. PATRAN, can
therefore not be used to generate a proper surface. The lower part shows the block structure as described in
[22] A software package was written that generates a sequence of cross sections from CATIA data generating
the desired grid point distribution on each cross section for the Hermes space plane.

S5 Swurface Grid Generation

Eq.(1) gives the general description of a parametric surface needed to describe the surface of a vehicle
(body ).
vi=xule?yi=1,2.3 )
In component form using (u.v) as independent variable this can be written as
A=) vEvuy) s =(uy). )

Let the surface of the body be the plane £ = constant, two mappings have to be considered for the surface grid:
From the physical space to parameter space and from there to the Computational Space with uniform grid
spacings AL = An = AL = 1. The surface grid can then be generated in various ways. For example, if Eqs.(2}
are known in form of a set of bicubic splines (Hermite, Bezier, B-Splines). the general form of 3-D elliptic grid
generation equations can be used taking into account the constraints represented by Eqs.(2). We start from
Eqs.(9) (see Chapter 7 for details), which are the 3-D grid generation equations

F ¢ '
aBIQEr " oE"
Using (' 1% ) instead of (uv), inserting the parametric representation in Eqs.(2) in Egs.(1), one obtains:

Vel ENOLEtEN0)i=1,2.3 (&)

) 1k

i=1,2,3. (2)

Emploving the chain rule for first derivatives

’

o= aug Gvei=1,23

n

L - -
ty = Al vy =123
fsecond dernvatives are denived tn a similar way), results in the following form of the final grid generation

equations
2 - 2 172 e 2
aptgg + 0 “Pug = 2Bugn +Yyugn v/ Quy +J°C | a'e, — Ple, enxe, =0 4

= . ’
C=o'e,, — ZB e t Yen

o =e e, Bi=e e Y = e
A similar equation holds for v Vectors e, ¢, denote tangent vectors. It should be noted that Eqs.(4) ensure that
points will move on the surface and that grid point distribution control functions P,Q.R can be determined for
example from the boundary point distribution or by additional requirements that can be imposed on them (see
below)

In order 1o improve the accuracy of the solution near the bady surface, additional constraints are imposed on
the grid on the surface:

It 1s however mandatory to have control over the gnd qualite near the honndaies, therefore the following
constraints are imposed where the body surface s assumed to be the plane - 0

»n
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(i) Orthogonality [2]:

eg.eg =0, er.en=0: Plane : £=0

er = ox/oE ; x =(x,y,2)
(it) Cell size control:

er.eg=(h ((;))2 = Height of a cell, i.e. distance of next layer of grid points from body surface.
(iii) Vanishing of principal curvature of {-directed lines, smoothness property.

ex.err =0, en-err =0

(iv) Iterative calculation of control functions [6], for specification of angles of intersection with vertical
gridlines and body surface, here for angle o (Q determines angle B)

-a
Pl = pn L AP . AP =-—arctan ’a_"'q_‘
Qreq

where g is a user specified angle and o denotes the current angle. (i) and (iii) are special cases of
(iv).

6. Data Structures for 2-D and 3-D Grid Topology

Jn a multi-block grid each block has its own local coordinate system. In the matching of neighboring
blocks there are the following possibilities for 2-D and 3-D SDs, see Figs.3 and 4, respectively.

(1) 2-D: Each side of the current block can be matched with a side of a neighboring block in two ways. Hence,
there are 4 X 2 possibilities of matching a side of a block with a specific side of a neighboring block.

1 i

e
—_— "

(b)
In Fig (4) side | of block 1 is matched 1o side 3 of block 2 in the same direction; i.e. points with the same n

values are matched In(h) the marching direction is reversed. This freedom is absolutely necessary to construct
fexible grids

(i) 3-D Each face of the current block can be matched with the tace of a neighboring block in 4 ways. Hence,
there are 6 x 4 possibilities of matching a face of a block with the specific face of a neighhoring block.

(a)
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(b)

In Fig (Sa) face 1 of block 1 is matched to face 3 of block 2 in the same direction. (b) shows the matchirg
where block 2 was rotated about the E—axis by an angle of /2.

The appropriate data structure describing neighboring blocks along with the matching sides has to be designed;
e.g. (40]. Here, a modern high level language like C or C++ is advantageous, since it allows the definition of
complex data structures. A short piece of code, taken from [41], shows how the orientation of neighboring
blocks with respect to each other is determined. Values rot_x, rot_y, rot_z varying from 0 to 3, determine
rotation of a face from 0 to 3/2n. The routine returns values for ni, nj, nk that describe the orientation of the
local CS of the neighboring block with respect to the neighboring block. In C, variables provided with an
asterisk, denote so called pointers, i.e. indirect addressing is used.

void orient (rot x,rot_y,rot_z,ni,nj, nk)
unsigred rot_x,rot_y,rot_z;
unsigned *ni, *nj, *nk;
{
void mul () ;
static int MZ{3}(3]=(0,-1,0,1,0,0,0,0,1},MY(3]){3}={0,0,1,0,1,0,-1,0,01,
MX{3](3}={1,0,0,0,0,-1,0,1,0},v(3]=(1,2,3};
int i,3,k;
for (i=0;i<rot_x;i++)
mul (MX, v) ;
for (j=0;j<rot_y; j++)
mul (MY, v);
for (k=0;k<rot_z;k++)
mul (M2, v);
*ni=v[0];*nj=v{1l);*nk=v[2]);

}

void mul (A, v)
int A{](3],v(}:
{
int C(3);
int i,73;
for (1=0;1<3;i++)
{C[i]=0;
for (j=0;3<3;3++)
Clil+=A[i) [3)*v(i):}
for (i=0;i<3;i++)
vi{i]=C[i];
}
Fig 6 . Hlustration of determination of orientation of local CS of neighboring block, using the C-language.

Among others advantages, pointers (denoted by *) ullowing indirect addressing can be used.

In Fig.7 we see the block structure for a 2-D multi-block grid for an airfoil where an H- and C- type grid are
merged. As can be seen, FVs with more than four vertices can be generated, which can easily be handled by the
flow solver. The blocking here is not so straightforward since common edges must have the same number of
grid points overlapping by one row or one column.
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Fig 7. The block structure is shown for an airfoil generating a grid which is both of H- and C- tvpe
structure (3]



Fig 8: Block structure for the 3-D grid, the fuselage-wing intersection shown in the first part of Fig 8.[40]
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Fig 9: The first two pictures show the 3-D grid for a fuselage-wing configuration. The other two figures show a
grid around a generic body, having some similarity with the space shuttle. The figure on the lower right
depicts a surface grid for the Hermes space plane using abour 10000 points. The purpose of this figure is to
demonstrate the importance of the combination of sophisticated visualization software together with advanced
supergraphics workstations, that are indispensable for work in aerodynamics.




7. The Grid Generation Procedure

In general, generating the grid point positions for 2-D and 3-D grids has to be done by numerical
techniques. This can be done by algebraic grid generation [12] (transfinite interpolation) or by solving PDEs
which can either be of hyperbolic [19] or elliptic [8] type. Using PDEs demands first the establishment of the
system of equations to be solved (one equation for each coordinate direction). Hyperbolic equations do not
need an outer boundary, rather the grid can be started from the surface of the body and then be advanced into
the SD. The procedure is stopped if the grid is far enough from the vehicle, that is all the important physics is
contained in the gridded region. Of course, this procedure only works if the outer boundary is not prescribed. In
such a way an orthogonal grid can be constructed, along with the specification of the grid cell size. Transfinite
interpolation, which is multi-directional interpolation, has its name from the fact that it matches the function on
the entire boundary, i.e. ai a nondenumerable number of points. Interpolation is normally very fast in
generating a grid, which is however, not necessarily smooth. If splines are to be used as blending functions, a
grid with continuous second derivatives is obtained, that is more costly to generate. The multi-surface
interpolation is a unidirectional interpolational procedure where interpolation from a vector field along with
vector normalization at each interpolation point is used in order to match boundaries. Both techniques,
algebraic and hyperbolic grid generation normally need some smoothing, which is done using an elliptic
technique. The use of elliptic PDEs gives rise to the solution of a boundary value problem, i.e. the boundaries
along with appropriate BC’s have to be prescribed. Therefore we will outline in some detail the essentials of
elliptic grid generation. Recalling an example from electrostatics, namely the picture produced by electric field
lines and equipotential lines formed by a set of two charged capacitors, one obtains a smooth mesh where grid
lines are concentrated automatically in regions of higher curvature. Since the physics is described by the
Laplace equation it is natural to use this equation together with a nonzero RHS, to provide additional control
over the grid line distribution.

In the Physical Plane (PP) the elliptic grid generation has the form

§u+§yy+§zz=P
nu+nyy+nzz=Q (5)
gxx+§yy+§z:=R

Using a more concise notation
g =88 =8 = ix'=xix?=yx =2
one can write
Vi =P g R EY =P =123 6)

where g'/ denote the contravariant components of the metric tensor g (see below). All equations, that is the grid
generation and the physical equations are solved in the CP and therefore have to be transformed along with
their BCs. The transformation rule for the Laplacian applied to a scalar function ®(x) where x = xi + yj + zk is
the position vector, is of the form

Vid=¢"®. + [V:E.') - (N

with

ot = Der (i minor of g )
Det g
g=(gu)=(e,.e)
=i

€ =
J&'

Let ®:=x' and note that V2x' = 0. Hence
g'l,l’lgrgj + [Vzgk] XI =0 (8)

where Einstein’s summation convention is used; double indices are summed over. Substitutions of Eq.(6) into
Eq.(8) results in

gxbg +Prxfi =05 121,23 )
Rewriting the Jatter for computational efficiency gives

! =0 /=
ayyxlg +anxhy +anxy +2[a|2x’§“ +anx’§§+az_\x£‘g) +12[ng+gx,, +Rx§] =0; I=1,23 (10)

ai; = Api Amj

!
Ami = (=1 [mi minor of [ %H
ox’
3
The source functions, P,, are used to influence the distribution of the coordinate lines or surfaces in the
physical domain. This system of equations is discretized and solved numerically. Very often this is done by

iteration. If multigrid techniques are used, a substantial speed up can be obtained. In that case, elliptic grid
generation will be competitive with the algebraic technique.

J = Det
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& Mesh Redistribution and Local Enrichment

The RHS of the grid generation equations (see Chap.7) contains the so called control functions, P.Q, and R.
These functions can be used to redistribute the mesh point configuration according to the grid point distribution
specified on the boundaries, which is used to calculate the values of the control functions and then interpolates
them into the SD. Hence, the grid in the interior shows the same grid point distribution as on the boundary.
Fig.10 shows the effect of the control function on the grid point locations and Fig.11 shows a redistributed
mesh for a cross section of the Space Shuttle.

il b

n . + » '
|
Tf + -~ —e
L - .
e ¢ + —
"o .
y, ity Yho—— s o
Y — ! ‘
[ SEDD PR VI U O
| S B {__.
6.3 3.3 2.5 ne0 P.0 .00 PO 0.0

Fig 10: This picture. taken from [6]. shows the impact of control functions on the grid point distribution.
Control function values larger than 0 move the grid lines to higher coordinate values. Movement in the
opposite direction is achieved for negative control function values.

Fig 11: Redistributed mesh for a space shuttle cross section via control functions

In Fig 12 the effect of control functions P.Q on the angles B and o is depicied for the plane { = const. Function
R controls the distance of the next layer of points. In order to prevent the influence of these control functions
into the SD, they are multiplied with an exponentially decreasing function. In order to reduce the number of
iterations, a good initial guess for P,Q,R should be supplied [6}.
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Fig 12: Control functions as used in [6] for the control of angle for grid lines in the direction off the body, i.e.
angles o.and B can be specified. The third control function controls the distance of the next layer of grid points

from the surface. Control functions are calculated iteratively. This approach allows a goud control of grid
point distribution.




Figs 13 and 14 show a comparison of grid redistribution and local enrichment. The grid is redistributed
according to the change in the physical solution, e.g. pressure or density using some type of either finite
approximation of the gradient or the second derivative. It is important to ensure that grid lines cannot cross

over. Details can be found in [14].

(b) Embedded grid

0o o 4\'!, N i 'nl'
(a) Redistributed grid (b) Embedded grid

Strface Mach number distributions for the RAE-2822 airfoil at M, = 075
Fig 13: Grid point redistribution versus local enrichment (8]. Although enrichment results in a somewhat
sharper shock, the data structure is more complicated if multi-block grids are used. However, mesh
redistribution results in a simpler code. An alternative is to use enrichment for complete blocks only so flux

conservation across neighboring faces is easily achieved.

A Comparison of Two Adaptive Grid Techmques

o e s v o o s W 17 THH issenusung| ' N |
041 HE 1 T 1 |
T ¥ 1
T T
H z
44 » e o o
it

{h) Redistributed grid (d) Fmbedded grid

(e) Mach number contours on embedded grid, .\M-: 010

{c) Marh number contours on redistnibuted grid, AAf -2 010

Adapted solutions for M, = 2 00 Aow in a duct with 10° wedges

Fig 14: Grid point redistribution versus local enrichment for SGs taken from [8]. Shock capturing features of
both techniques are very good where local enrichment gives somewhat better results.

9. Unsrructured Grids

In the past, UGs have been used mainly in structural mechanics, in connection with the finite element
method (FEM). Recently UGs have been applied to fluid dynamics, and some impressive results have been
obtained, see, e.g., Fig.15. This is not in contradiction to our discussion in Sec.2.
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Fig 1S Detail of surface riuigilation from a teircliedral mesh around the FI15 aircraft, taken from [29]

The major concem is that UGs using the FEM will demand much more hardware resources and higher
computation times. Moest UGs are generated using a Delaunay triangulation that will produce the most
equiangular triangles possible. For viscous flow this is not well suited since a directionally refined mesh is
needed. The generation of this type of mesh is described in [28]. However, UG generation is at least an order of
magnitude slower compared to the block-structured technique.

i0. Grid Generation on Parallel Computers

In the preface of the proceedings of the First Grid Generation Conference [43], the possible impact of
parallel computers was briefly discussed, and the importance of parallel algorithms for CFD was stressed. In a
recent survey paper by Holst {42}, the number of floating point operations for the solution of the 3-D N-S
equations exceeds 10" for the hypersonic case with a grid of ome 10° point This estimate is valid for the
stativnary case only and does not include the solution of equations needed tn account for chemical reactjons
Thus, for realistic hypersonic equations where up to some 10’ grid points may be necessary, and, including
transition and turbulence phenomena as well as thermo- chemical nonequilibrium, 10" or even 10'® floating
point operations have to be performed. Clearly, this tremendous number of floating point operations cannot be
handled by a single processor in a time and cost effective manner. The solution therefore lies in the use of a
computer architecture employing a set of processors working in parallel.

Using the overlapping multi-block approach, it is naturally to ascribe one or more blocks to each processor on
which to solve the Poisson equation (for grid generation) or the physical equations. This process is called DC
(Domain Decomposition). Grid generation is a good example for DC, since exactly the same structure is used
for the flow solver, which is computationally much more expensive. However, it is important to parallelize the
code in such a way that there are no dependencies on the shape of the SD, i.e. in some papers the SD was
assumed to be of rectangular shape, which was then subdivided. For the general case, the SD is a set of
connected rectangles or boxes and its shape must not influence the speedup of the parallel algorithm [4].

We concentrate here on massively parallel systems, e.g. Intel’s hypercube or the Suprenum machine [37},
which are private memory (several MB), message passing systems where each processor has a power of several
MFLOPs.

It is often stated that scientific programs have several percent of serial computational work, s, that limits the
specdup, a. of parallel machines to an asymptotic value of 1/s according to Amdahl’s law where s+p=1
(normalized) and # is the number of processors:

- s+p :_,l ‘ (1
s+pin  s+pin

This law is based on the question: Given the computation time on the serial conputer how long does it take on
the parallel system? However, the question can also be posed in another way: Let 5, p’ be the serial and
parallel time spent on the parallel system then s”+p’n is the time spent on a uniprocessor system. This gives an
alternative to Amdahl’s law and results in the speedup which is more relevant in practice:
’ ’
sS+p'n
a=——L—n+(l—n)s' . (12)

’ s

s +p

It should be noted that DC does not demand the parallelization of the solution algorithm but is based on the
partitioning of the SD; i.e. the same algorithn on different data is executed. With that respect, the serial pans s
or s’ can be set to 0 for DC and both formulas give the same result. The important factor is the ratio rey (see
below), which is a measure for the communication overhead. In general, if the selection algorithm is
parallelized, Amdahl’s law gives a severe limitation of the speedup, since for n —» 00 a is equal 1/s. If, for
example, s is two percent and # is 1000, the highest possible speedup from Amdahl’s law is 50. However, this
law does not account for the fact that s and p can be functions of n. As described below the number of
processors, the processor speed and memory are not independent variables, which simply means, if we connect
more and faster processors, a larger memory is needed, leading to a larger problem size, and thus reducing the
serial part. Therefor speedup increases. If §” equals two percent and n = 1024, the scaled sized law will give a




speedup of 980, which actually has been achieved in practice. However, one has to keep in mind that s and &’
have different values. If 5’ denoted the serial part on a parallel processor in floating point operations, it is not
correct to set s=5'n since the solution algorithms on the uniprocessor and parallel system are different in
general.

For practical applications the type of parallel systems should be selected by the problem that has to be solved.
For example, for routine applications to compute the flow around a spacecraft on a grid of 107 grid points,
needing some 10 floating point operations, computation time should be some 15 minutes. Systems of 1000
processors can be handled. so each processor has to do some 10'! computations, and therefore a power of 100
MFlops per processor is needed. Assuming that some 100 words, 8 bytes/word. are needed per grid point, the
total memory amounts to 8 GB, that means 8 MB of private memory for e I processor, resulting in 22 grid
points in each coordinate direction. The total amount ot processing time pes block consists of computation and
communication time:

t, =N *4000% 1, + 6N * 10% 8% 1 (13)

where we assumed that 4000 floating point operations per grid point are needed, and 10 variables of 8 byte
length per boundary point have to be communicated. Variables t. r7- are the time per floating point operation
and the transfer time per byte, respectively. For a crude estimate, we omit the set up time for a message. Using
a bus speed of 250 MB/s (quite high), we find for the ratio of computation time and communication time.
N3 * * 250 .
g NOAO0*2S0__ 0 )
ON<* 10*8* 100
That is for N = 22, communication time per block is less than 0.25% of the computation time. In that respect,
implicit schemes should be favoured, because the amount of computation per time step is much larger than for
an explicit one.

In order to achieve the high computational power per node a MIMD/SIMD (Multipie Instruction Multiple Data;
Simple Instruction Multiple Data) architecture should be chosen; that means, the system is of massively
parallel architecture, e.g. Suprenum, and each processor itself is equipped with a pipelined floating point
processor. It should be noted that even if r¢731 this is not sufficient, since, if the computation speed of the
single processor is small, e.g. 0.1 MFlops, this will lead to a large speedup which is, of course, somewhat
misleading because the high value for r¢- only results from the low processor performance. In conclusion, it is
believed that the concept of MIMD/SIMD is the most promising tor computationally intensive applications in
fluid physics and DC will be a powerful concept to tackle problems demanding excessive number crunching.

1. Computer Issues in Grid Generation

Fortran 77 is the language most widely used in science and engineering. This language has quite a number
of deficiences as will become clear obvious when compared with C. It should be kept in mind that Fortran (or
Ratfor) is a subset of C, and that using this part of C will only take a couple of days for an experienced F77
programmer. [f the more advanced parts of C are going to be used, a longer training period is needed, resulting
in higher productivity and a safer code. In the following a brief comparison between F77 and C is given:

- C contains all F77 possibilities

- C has advantages with respect {0 automatic debugging (function prototyping)

- C allows for dynamic storage allocation

- C allows for the definition of complex data structures

- C programs are much shorter and well structured

- C has an interface to many graphics packages

- C allows recursive programming

- Cis portable

- F77 programs can be called from C
The recommendation is: If there are no historical constraints, the C language should be preferred, in particular
tor 3-D multi-block grids where the data structure is more complicated and especially for UGs, which have a
much more compiex data structure. With the growing popularity of the UNIX operating system, a C compiler

will be available from a simple PC to the largest supercomputer, even DEC and IBM have now joined in the
UNIX market.

The second important part is visualization of 3-1 grd and also of the flowtheld properties. Very powerful
graphics superworkstations are now available, e.g. Silicon Graphics, Ardent, Stellar, Alliant etc. which provide
very sophisticated graphics hardware that frees the user from the burden of low level graphics programming,
for example, hidden surface detection by the use of bitplanes, which results in a speedup of several orders of
magnitude compared with dumb workstations capable of drawing lines only, while computations are performed
on a mainframe.

Adding interactiveness to the grid generation process, in combination with the new type of workstations most



likely will be the way to reduce the grid preparation time for complex configurations from months to days.

Acknowledgement

The authors would like to thank, W. Schmidt, Domier GmbH, for his suggestions during the preparation of this
paper. The authors are particularly grateful to D. Balageas and D. Devezeaux, thermophysics departement,
Onera, Chatilion, for providing the data for the Hermes geometry. The authors are also grateful to Pineridge
Press, Swansea, U.K. for the permission to reproduce several figures from the Proceedings of the Intemational
Conference on Numerical Grid Generation in Fluid Mechanics '88. Not all of the papers listed in the references
are cited in the text but they have been used in the preparation of this overview and are therefore listed to give
credit to the authors.

REFERENCES

ty

]

31

{41

{51

(6]

(7

(8]

(9

(10]

(11]

{12]

{13]

[14]

{15]

(161

(17

Andrsws,A.E., 1988 : Knowledge-Based Flow Field Zoning ;in : Numerical Grid Generation in
Computational Fluid Mechanics '88, Pineridge Press,pp. 13-22.

Sorenson,R.L.,1988 : Three-Dimensional Zonal Grids About Arbitrary Shapes by Poisson’s Equation
;in : Numerical Grid Generation in Computational Fluid Mechanics '88, Pineridge Press,pp.75-84.

Clark,G.L.,Ankeny,L.A.,1988 : Grid Generation Software Engineering at Los Alamos ;in : Numerical
Grid Generation in Computational Fluid Mechanics '88, Pineridge Press,pp.95-104.

Gentzsch,W. Hauser,J..1988 : Miesh Generation on Parallel Computers ;in : Numerical Grid Generation
in Computational Fluid Mechanics '88, Pineridge Press,pp.113-124.

Eyler,L.L.,White M.D.,1988 : Surface Constrained Grid Generation with Langrange Multipliers ;in :
Numerical Grid Generation in Computational Fluid Mechanics '88, Pineridge Press,pp.125-136.

Hilgenstock,A.,1988 : A Fast Method for the Elliptic Generation of Three Dimensional Grids with Full
Boundary Control ;in : Numerical Grid Generation in Computational Fluid Mechanics '88, Pineridge
Press,pp.137-146.

Hoffman K.A. Rutledge, W.H.,Rodi,P.E.,1988 : Hyperbolic Grid Generation Techniques for Blunt Body
Configurations ;in : Numerical Grid Generation in Computational Fluid Mechanics '88, Pineridge
Press,pp.147-156.

Jones,G.A. . ThompsonJ.F.,Warsi,Z.U.A.,1988 : Surface Grid Generation for Composite Block Grids ;in
: Numerical Grid Generation in Computational Fluid Mechanics '88, Pineridge Press,pp.167-176.

Hoffman K.A.,Chiang,T-L,Bertin,J J.,1988 : Effect of the Grid System on the Solution of Euler
Equations ;in : Numerical Grid Generation in Computational Fluid Mechanics '88, Pineridge
Press,pp.185-194.

Wang,Y Eiseman,P.R.,1988 : Patch Structured Surface Grid With Dynamic Curvature Clustering ;in :
Numerical Grid Generation in Computational Fluid Mechanics '88, Pineridge Press,pp.195-206.

Warsi,Z.U.A.,Tiam,W.N.,1988 : Surface Grid Generation Through Elliptic PDE’s ;in : Numerical Grid
Generation in Computational Fluid Mechanics '88, Pineridge Press,pp.207-216.

ZhuJ. Rodi,W . ,Schoenung,B.,1988 : Algebraic Generation of Smooth Grids ;in : Numerical Grid
Generation in Computational Fluid Mechanics '88, Pineridge Press,pp.217-226.

Djomehri,M.J.,.Deiwert,G.S.,1988 : Three-Dimensional Self-Adaptive Grid Method for Complex Flows
:in : Numerical Grid Generation in Computational Fluid Mechanics '88, Pineridge Press,pp.277-288.

Dannenhoffer II1J.F.,1988 : A Comparison of Two Adaptive Grid Techniques ;in : Numerical Grid
Generation in Computational Fluid Mechanics '88, Pineridge Press,pp.319-328.

Catherall,D.,1988 : Solution-Adaptive Grids for Transonic Flows ;in ;: Numerical Grid Generation in
Computational Fluid Mechanics '88, Pineridge Press pp.3129-350.

Arina R.,1988 : Adaptive Orthogonal Surface Coordinates :in : Numerical Grid Generation in
Computational Fluid Mechanics '88, Pineridge Press,pp.351-360.

Shaw J.A.,GeorgalaJ M., Weatherill N.P.,1988 : The Construction of Component-Adaptive Grids for
Aerodynamic Geometries ;in : Numerical Grid Generation in Computational Fluid Mechanics '88,
Pineridge Press,pp.383-394.

P




[18]

119

(20]

{21]

(291

[30]

(31

(32)

[33]

{34

{35

(36]

137

[38)
(391

{40]

(41]
(42]

(43]

Nielsen,P. Skovaard,0.,1988 : A Depth Adaptive Grid Using a Control-Function Approach ;in :
Numerical Grid Generation in Computational Fluid Mechanics '88, Pineridge Press,pp.435-442.

Klopher,G.H.,1988 : Solution Adaptive Meshes with A Hyperbolic Grid Generator :in : Numerical Grid
Generation in Computational Fluid Mechanics '88, Pineridge Press,pp.443-454.

Gu,C-Y.,Fuchs,L.,1988 : Zonal Grid Applications to Computations of Transonic Flows ;in : Numerical
Grid Generation in Computational Fluid Mechanics "88, Pineridge Press,pp.465-484.

Holcomb J.E., 1988 : Requirements For The Adaptive Grid Navier-Stokes Analysis of Complex 3-D
Configurations and Flowfields ;in : Numerical Grid Generation in Computational Fluid Mechanics '88,
Pineridge Press,pp.495-504.

Seibert, W..1988 : A Graphic-Iterative Program-System to Generate Composite Grids for General
Configurations ;in ;: Numerical Grid Generation in Computational Fluid Mechanics ‘88, Pineridge
Press,pp.517-328.

Miki,K.. Tago K., 1988 : Three-Dimensional Composite Grid Generation by Domain Decomposition and
Overlapping Technique ;in : Numerical Grid Generation in Computational Fluid Mechanics '88,
Pineridge Press,pp.549-558.

Allwright S.E..1988 : Techniques in Multiblock Domain Decomposition and Surface Grid Generation
:in : Numerical Grid Generation in Computational Fluid Mechanics 88, Pineridge Press,pp.559-568.

Amdahi,D.J. 1988 . Interactive Multi-Block Grid Generation ;in : Numerical Grid Generation in
Computational Fluid Mechanics "88, Pineridge Press,pp.579 588.

Kennon S.R. Anderson,D.A., 1988 : Unstructured Grid Adaptation for Non-Convex Domains ;in :
MNumerical Grid Generation in Computational Fluid Mechanics '88, Pineridge Press,pp.599-610.

Buratynski. E.K. 1988 : A Three-Dimensional Unstructured Mesh Generator for Arbitrary Internal
Boundaries :in : Numerical Grid Generation in Computational Fluid Mechanics "88, Pineridge
Press,pp.621-632.

Holmes,D.G. . Snyder,D.D.,1988 : The Generation of Unstructured Triangular Meshes Using Delaunay
Triangulation ;in : Numerical Grid Generation in Computational Fluid Mechanics '88, Pineridge
Press,pp.643-652.

Baker.T.J. 1988 : Generation of Tetrahedral Meshes Around Complete Aircraft ;in : Numerical Grid
Generation in Computational Fluid Mechanics *88. Pineridge Press,pp.675-686.

LohnerR. .Parikh. P. .Gumbert.C..1988 : Interactive Generation of Unstructused Grids for Three
Dimensional Problems :in : Numerical Grid Generation in Computational Fluid Mechanics '88,
Pineridge Press.pp.687-698.

Baum.J.D..Lohner R, 1988 : Numerical Simulation of Shock-Box Interaction Using An Adaptive Shock
Capturing Scheme :in . Numerical Grid Generation in Computational Fluid Mechanics ‘88, Pineridge
Press.pp.699-708

Sonar, T. Radespiel R.1988 : Geometric Madelling of Complex Aeredvnamic Surfaces and Three-
Dimensional Grid Generation i Numenical Coad Geperanon et cmpaanomd Fluid Mechanics "8R
Pinendge Press.pp.795-804.

Abolhassani,J.S. Smith R E..1988 : Multiple-Block Grid Adaption for an Airplane Geometry :in :
Numerical Grid Generation in Computational Fluid Mechanics '88, Pineridge Press.pp.815-824.

Soni,B.K.,1988 : GENIE: Generation of Computational Geometry-Grids for Internal-Extemal Flow
Configurations ;in : Numerical Grid Generation in Computational Fluid Mechanics ‘88. Pineridge
Press,pp.915-924.

Jacobs, ). M.J. W _Kassies,A.,Boerstoel J.W. Buijsen,F.,1988 : Numerical Interactive Grid Generation for
3D-Flow Calculation ;in : Numerical Grid Generation in Computational Fluid Mechanics '88, Pineridge
Press,pp.925-944.

Bemard,R.S.,1988 : Grid-Induced Computational Flow Separation ;in : Numerical Grid Generation in
Computational Fluid Mechanics '88, Pineridge Press,pp.955-964.

Giloi,W.K.,1988: Suprenum a trendsetter in modem supercomputer development; in Parallel
Computing 7,pp.283-296.

Baker,T.J.,1989 : private communication.

Thacker, W.C.,1977: Irregular Grid Finite Difference Techniques; Simulations of Oscillations in
Shallow Circular Basins, J.Phys.Ocean 7, pp.282-292.

Coleman,R.,1988: Adaptive techniques for Boundary Grid Generation ;in : Numerical Grid Generation
in Computational Fluid Mechanics '88, Pineridge Press,pp.339-350.

Haiuser,J. et al,1989: GRID-3D : A General 3-D Multi-Block Grid Generator, to be published.

Holst,T.,1987: Numerical Solution of the Navier Stokes Equations about 3-D Configuration. A Survey ;
Supercomputing in Aerospace, pp281-293 (Ed.P.Kutler), NASA Ames Symposium

Hauser,J.. Taylor,C.1986 : Numerical Grid Generation in Fluid Dynamics. Pineridge Press




GENERAL STRUCTURED GRID GENERATION SYSTEMS

by
Joe F. Thompson
Professor
Mississippi State University
Department of Aerospace Engineering
Drawer A
Mississippi State, MS 39762
USA

ABSTRACT

~ Current techniques for the generation of composite-block structured grids for general 3D configurauons are
discussed. The various aspects of grid generation involved are noted, and their incorporation in general codes is
cited. Current techniques for adaptive grids for general configurations are also discussed.

1. INTRODUCTION

Grid generation has piogressed to ihe stage now of large general code development. The basic mathematical
techniques involved have, to a large degree, been settled on and developed to an adequate level for common use.
This is not to say that no further theoretical developments are needed. and advances continue to be reported in the
literature, but major effort is now focusing on implementation in comprehensive codes. The principal concern s,
in fact. now the development of automated procedures and cades with effective user interfaces.

The major emphasis now is on the treatment of very complex 3D configurations and on dynamically-adaptive
grids coupled with solution codes. In regard to the former, although general codes are now available, it can <till
take a man-month to generate a grid for a complex new configuration. Although more computer time is typically
required for a flow (or other PDE) solution, more man-time is generally spent on the grid. This is particularly a
problem as flow (PDE) codes are becoming available that can be run effectively by design engineers. while the
effective use of the grid codes still requires considerable expertise and experience. Adaptive grid techniques are
not as well settted, and a number of approaches are still being considered  Some trends are emerging, however,
and the utility of grid adaptation is clear.

This paper delincates the essential grid generation technigues that are incorporated in general codes, takes
note of some such codes, and comments on some of the more promising adaptne approaches. This is not,
however. a current survey of grid generation. and no effort is made to cover all the hiterature on the subject or to
cite all works in the area. In particular, no conscious attention 1s given to new generation techniques as such

2. GRID TYPES

The three basic grid approaches are a rectangular or Cartesian-like grid, a structured curvilinear body-con-
forming grid. and an unstructured triangularized grid. Each grid type has advantages and disadvantages. The
rectangular grid is well-ordered. trivial to generate, readily ~llows accurate interior difference approximatons,
and the representation of a difference approximation requires the minimum work per step. However, boundary
representation requires special logic, is generally of poor accuracy, and the grid does not cluster to efficicatly
resolve viscous boundary layers on curved boundaries. The curvilinear body-conforming grid is also well-or-
dered, allows higher-order difference approximations, permits simple and accurate boundary difference ap-
proximations, and can be clustered into gradient regions. It is especially well suited for viscous boundary laver
approximation. However, the governing equations are more complex to difference on a curvilinear grid (al-
though body-conforming grids often permit use of additional approximations), and grid generation, while not
difficult for simple bodies, is no longer trivial. The unstructured triangularized mesh has good grid concentration
(ie., triangles can be readily deleted in smooth gradient regions) and the shape of the houndary curve is readily
conformed to. However, such a mesh 1s poorly ordered and is therefore less amenable to the use of certain
algorithms (e.g. ADI) and vectorized computers. The unstructured mesh requires less ingenuity to devise (though
not necessarily to code) for complicated regions than does the structured mesh, but requires considerably more
computer time and storage, as well as a much more involved data handling procedure. Moreover, unstructured
meshes have not been used to a significant degree for resolving high Reynolds number viscous boundary layers of
practical interest. Combinations of structured and unstructured meshes can also be used, with structured meshes
near the boundaries connected by unstructured meshes.

For a simple body shape, the use of a single body-conforming curvilinear mesh leads to the most efficient
solution procedure. As a result most current aerodynamics solution codes employ a body-conforming structured,
curvilinear grid. Considerable effort is now underway to extend these procedures for complex three-dimensional
configurations, generally by using composite grid techniques.

3. COMPOSITE GRIDS
Terminology

The use of composite grids has been the key to the treatment of general 3D configurations with structured
grids. Here in general, "composite™ refers to the fact that the physical region is divided into subregions (domain
decomposition), within each of which a structured grid is generated. These sub-grids may be patched together at
common interfaces, may be overlaid, or may be connected by an unstructured grid. Considerable confusion has
arisen in regard to terminology for composite grids, making it difficult to immediately classify papers on the
subject.
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Composite grids in which the sub-grids share common interfaces are referred to as "block”, "patched”,
"embedded”, or "zonal” grids in the literature. The use of the first two of these terms is fairly consistent with this
type of grid ("patched” comes from the common interfaces, "block™ from the logically-rectangular structure),
but the last two are sometimes applied to overlaid grids. Overlaid (overset) grids are called “chimera™ grids after
the composite monster of Greek mythology, but may also be said to be "overlapped”. Unfortunately, the com-
mon interface grids can also be said to overlap since they typically use surrounding layers of points to achieve
continuity. Embedded grids can be most anything, and the term is probably best avoided. The use of "zonal”
comes mostly from CFD applications where the suggestion of applying different solution equation sets in differ-
ent flow regions is made. Perhaps "block” or "patched” would be best for the common interface grids, "chi-
mera” for the overlaid (avoiding "overlapped”) grids, and "hybrid” for the structured-unstructured combina-
uons.

Forms

With this terminology adopted, the block (or patched) grids may be completely continuous at the interfaces,
have slope or line continuity, or be discontinuous (sharing a common interface but not common points thereon).
("Block™ seems to cover all of these possibilities, but "patched” is being stretched a bit in the latter case.)
Complete continuity is achieved through a surrounding layer of ("image”, “phantom™) points at which values are
kept equal to those =+ corresponding “object” points inside an adjacent block. This requires a data indexing
procedure to link the blocks across the interfaces. With complete continuity, the interface is not fixed (not even in
shape). but is determined in the course of the solution. This type of interface necessitates an elliptic generation
system. Slope continuity requires that the grid generation procedure incorporate some control over the intersec-
tion angle at boundaries (usually, but not necessarily, orthogonality), as can be done through Hermite interpola-
tion in algebraic generation systems or through iterative adjustment of the control functions in elliptic systems. In
this case the points on the interface are fixed, and the sub-grids are generated independently except for the use of
the common interface points and a common (presumably orthogonal) angle of intersection with the interface. The
CFD coding construction is greatly simplified with either complete or slope continuity, since no algorithm modifi-
cations are necessary at the interfaces.

The chimera (overlaid) grids are composed of completely independent component grids which may even
overlap other component boundary elements. creating “holes™ in the component grid. This requires flagging
procedures to locate grid points that lie out of the field of computation, but such holes can be handled even in
tridiagonal <olvers by placing ones at the corresponding positions on the matrix diagonal and all zeros off the
diagonal. These overlaid grids also require interpolation to transfer data between grids, and that subject is the
principal focus of effort in regard to the use of this type of composite grid.

The hybrid structured-unstructured grids avoid this interpolation by replacing the overlaid region with an
unstructured grid connecting logically-rectangular structured component grids. This can require madification of
solution codes, however.

Codes

A number of codes. some quite general, based on the block structure have emerged, allowing CED applica-
tons on full-arrcraft and other general configurations. Some of these block codes are EAGLE (Refs. 1.2).
3DGRAPE (Refs. 3,4, NUGGET (Ref. 5), GRID-2D (Ref. 6), GRIDGEN (Refs.. 7,8), GENIE (Ref. 9), and the
codes of Refs. 10-25. The principal overlaid grid code is still that which coined the chimera name (Ref. 26). but
this approach is also applied in Refs. 27 and 28. Some applications of hybrid grids have been made to general
configurations, cf Refs 29,120

Techniques

Algebraic grid generation today is generally based on transfinite interpolation, which provides a general
mechanism for combining one-dimensional interpolation formulas into a 3D framework which matches all the
boundaries of a region. With transfinite interpolation, a grid is generated in the interior of a region algebraically
by interpolation from the entire (closed) boundary of the region, and perhaps from some interior specified or
control surfaces. The basis of this multidimensional interpolation can be either Lagrange (linear) or Hermite
{cubic) interpolation, the latter allowing boundary orthogonality. The blending functions which accomplish the
interpolation can be linear, but a better choice is based on normalized arc-length distribution, itself interpolated
from the boundaries by transfinite interpolation of one less dimensionality. This latter procedure allows bound-
ary point distributions to be reflected thronghnut the field  Spline he~ding functions defined by specified point
distributions are also used. Transfinite interpolation can produce boundary or grid-line overlapping, particularly
with Hermite interpolation, for some configuration shapes, and interior surfaces (actual or control) are employed
to prevent such overlap. Another device used to prevent grid overlap, and also to control the orientation and
spacing of grid lines, is the division of blacks into sub-blocks for the purpose of the interpolation only, not
affecting the biock data structure. Values on the sub-block interior boundaries can either be specified for explicit
control, or can be interpolated from the edges by transfinite interpolation of one less dimensionality. Grid
overlap is a problem with algebraic grids, particularly when Hermite interpolation is used for boundary ort-
hogonality. Overlap can also occur with elliptic grids, but often the elliptic system can unravel an overlapped
algebraic grid.

Transfinite interpolation is the fundamental basis of the composite-block codes of Refs. 19-21, 24-25, and 9,
and is also commonly used to generate an initial algebraic grid in codes based on elliptic generation, e.g. Ref. 1.
The algebraic codes often use an elliptic system as a smoother, cf. Refs. 24,25, and 9. Additional control of the
algebraic grid in the interior of the field can be exercised by including interior "support” surfaces in the interpola-
tion as in Refs 24 and 25. Related to this is the use of spline blending functions employing interior points as in
Ref. 31. Other algebraic approaches that have been used in composite-block grids include the curve-based
system of Refs. 22 and 23, and interpolation from nodes, Ref. 32, following finite element technology.




Elliptic grid generation involves the solution of a set of partal differential equations for the grid, usually by
point SOR iteration for general configurations. With point SOR iteration, locally-optimum acceleration parame-
ters should be used for robustness, and directed (based on the sign of the control functions) one-sided differences
should be used for the first derivatives. These equations involve control functions which control the orientation
and spacing of the grid, and which can enforce boundary (or interface) orthogonality. These controf functions
can be evaluated automatically by transfinite interpolation from the boundaries of the region, or can be evaluated
from an initial algebraic grid and then smoothed. In the latter case, the smoothing should be done only in the two
directions other than that of the control function. With control functions determined from the algebraic grid in
this manner, the elliptic system produces a grid that has the same general distribution as the algebraic grid but
which is smoother. With the control functions evaluated by interpolation from the boundaries, the spacing and
curvature parts of the control function should be evaluated on different boundaries and interpolated separately
into the field. The spacing component is evaluated on the sides logically parallel to the direction of the control
function, and interpolated by transfinite interpolation of one less dimensionality, while the curvature term is
evaluated on the other two sides and is interpolated one-dimensionally. This approach allows the boundary point
distribution to be reflected into the field. Boundary orthogonality is achieved by iterative adjustment of the
control functions. Al of these techniques for elliptic generation systems are discussed in detail in Ref. 33.

An elliptic generation system is the fundamental basis of the composite-block codes of Refs. 1-18 and 34-35.
Of these, the code of Refs. 3 and 4 is based on slope continuity at block interfaces. The rest use a surrounding
layer of points around each block to achieve complete continuity at the interfaces. Many of these codes incorpo-
rate itere 've adjustment of control functions for boundary ortho- gonality, and also for use on interfaces in order
1o allow .nore control of the grid. Still more control is possible with the provision of applying this feature on
interior surfaces within blocks as in Refs. 1,2 and 15,16, Various forms of interpolation of the boundary control
functions into the field in the course of this iterative adjustment are in use. The original source of the procedure,
Refs. 3.4, uses exponential interpolation, while Ref. 36 uses a power-law decaying interpolation with subsequent
modifications of the contral functions to improve smoothness and reduce skewness. The code of Refs. 1,2 does
not interpolate the control functions from the boundary, but rather applies the orthogonality on each successive
surface off the boundary to a decaying degree. In any case, it is important to have good control over the extent of
the orthogonality from the boundary since different configurations and different applications, e¢.g. Euler, Navier-
Stokes. call for different extent of orthogonality into the field. Ref. 35 uses the biharmonic equation, which
admits an additional boundary condition that can be used for boundary ortho-gonality.
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The specification of the boundary point distribution is a two-dimensional grid problem in its own right. which
can also be done either by transfinite interpolation or an elliptic generation system. In general. this is a 2D
boundary vaiue problem on a curved surface, i.e., the determination of the locations of points on the surface from
specified distributions of points on the four edges of the surface. This is best approached through the use of
surface parametric coordinates (cf. Refs. 37,38,1-2, and 14) whereby the surface is first defined by a 2D array
of points, e g. a set of cross-sections. The surface is then splined (bi-cubic), and the spline coordinates (surface
parametric coordinates) are then made the dependent variables for the interpolation or the elliptic generation
system. The generation of the surface grid can then be accomplished by first specifying the boundary points on
the four edges of the surface grid. converting these Cartesian coordinate values to parametric coordinate values
on the edges, then determining the interior values of the parametric coordinates from the edge values by the
generation svstem, and finally converting these parametric values to Cartesian coordinates. The surface grid
generation system can operate with the surface parametric coordinates taken as arc lengths along the two defining
directions on the surface, but this has the disadvantage of requiring a search to locate the particular spline patch
The need for this search can be eliminated by taking the point indices on the surface definition as the surface
parametric coordinates.

Point Distributions

The starting point of grid generation is the setting of a point distribution on a curve, and this can be done by
splining the set of points defining the curve and then placing the desired number of points on the spline curve
according to a relative arc length distribution. The point distribution on curves is probably best done in terms of
normalized arc length using the hyperbolic functions that have been shown to reduce the truncation error induced
by the unequally spaced points (Refs. 39,40. cf. also 1,2,41). These functions can also be employed as the
blending functions in transfinite interpolation by interpolating normalized arc-':ngth distributions from the
haundaries (cf. Refs. 1,2). Another approach to point distribution is that based on exponential functions, with
variable exponents or with exponents of exponents for additianal control (cf. Refs. 42 and 3). These functions
are used in Ref. 42 to control orthogonality and grid overlap as well.

Orthogonality

Coordinate systems that are orthogonal, or at least nearly orthogonal, near the boundary make the application
of boundary conditions more straightforward. Although strict orthogonality is not necessary, the accuracy dete-
riorates if the departure from orthogonality is too large. The implementation of algebraic turbulence models is
more reliable with near-orthogonahity at the boundary, since information on local boundary normals is usually
required in such models. The formulation of boundary-layer equations is also more straightforward and unambi-

guous in such systems. It is thus bettcr in general, other considerations being equal, for grid lines to be nearly
normal to boundaries.

Construction

The construction of a block grid normally begins with the specification of the four edges of a logically-rectan-
gular surface patch. These edges are either defined directly as space curves or as parametric curves on a splined
curved surface. The surface grid on the patch then is generated by either transfinite interpolation or from the
elliptic system. In the case of generation on a curved surface, the interpolation or the elliptic solution is done in
terms of the parametric coordinates, after which the Cartesian coordinates are recovered from the splined
surface. The surface grid generation may itself be done in a block format, with complete continuity across the
patch interfaces. When surface grids have been generated on all six sides of each block, the 3D grid in the block




is generated by transfinite interpolation or from the elliptic system, taking account of continuity connections
across the interfaces.

The comgosite-block grid construction thus basically involves the generation of block edges, then faces, and
finally volumes. The six faces bound the volume, and four edges bound a face. The edge generation is simply the
placing of a point distribution on a curve, which may either be defined and then splined, or may be constructed
geometrically. Definition may be by input cross—sections, plane-patch intersections (Ref. 35), by a curve gener-
ated parametrically on a specified spline curved surface (cf. Refs. 1,2), or by other means. With the four edges in
place, the face can be generated as a defined surface or may be constructed in free form. With a defined surface,
the generation can be done in terms of surface parametric coordinates on the splined defined surface by transfi-
nite interpolation or by an elliptic system (Refs. 1,2,38). The use of surface parametric coordinates allows
general surfaces to be treated. By contrast, the use of projection onto planes, or the use of a functional relation-
ship for one Cartesian coordinate in terms of the other two, restricts the generality and requires the provision for
rotations to put the surface in an orientation that can be treated. Therefore generation in terms of surface
parametric coordinates is the preferred method of surface grid generation.

Surface definition is a significant problem in itseif. Some approaches are the various forms of patching, e.g.
Coon’s patches (cf. Ref. 41), B-spline patches (Ref. 43). and transfinite interpolation (cf. Refs. 1,2,31). Assem-
blies of cross-sections are also used, either input directly (cf. Refs. 44,45) or formed as plane-patch intersections
(Ref. 35). Considerable effort is now being directed at surface definition for grid generation directly from CAD
constructions (cf. Ref. 8).

~ Surface intersections can be done by splining the intersected surface, and one family of lines on the intersect-
ing surface, and then using a three—variable Newton iteration to determine the intersection curve (cf. Refs. 1,7,38,
and 41).

The collapse of block faces into lines or even points greatly increases the generality of the composite-block
structured grids, and such degenerate faces do not require any special treatment in finite volume flow codes.
This feature is probably employed in most codes, and Refs. 1,2,4,11, and 13 are representative. This face
collapse also allows axis singularities to be included. Ref. 46 introduces a bifurcation singularity for a branching
pipe that allows the use of a cylindrical-type grid in the branched system.

User Interface

’he man-time involved in grid generation is being greatly reduced by graphical user interfaces whereby the
user aperates the code and constructs the grid piece-by-piece on the workstation. To be really effective, how-
ever. the interface must build a file of input commands which can be subsequently edited or submitted again to
reproduce the grid. Otherwise, the user must start again from the beginning. and although the grid is saved, the
construction process is not. It is really the construction process that must be saved, since the process can be quite
lengthy and will undoubtedly be useful again when modified or when used as the basis for yet another problem.

The interface must have some mechanism for identifying important points, curves, surfaces and spacings, and
some means of incorporating these in the saved construction process that will allow changes in the number of
points or spacing on a segment, or the position of a segment, to be automatically propagated throughout the
construction process

A complete grid package will contain a front-end boundary code to prepare the boundary segments for the
grid code  This front-end code mav be an interface from a CAD/CAM system, or may be a curve and surface
construction mechanism in itself. The detinition of boundary geometry for real configurations continues to be a
significant problem. It should be noted that many solid modelers are meant to produce surfaces. not to reproduce
existing surfaces with exactitude

Considerable effort is now being directed at the development of efficient and effective interactive interfaces
for grid generation systems, in order to reduce the still considerable man-time required for grid gencration for
complex configurations. [nterfaces for surface construction are included in Refs. 8,43, and 47. Ref. 18 includes
an interface from PATRAN, and Ref. 48 redefincs a grid algebraically in terms of control points which can then
be interactively moved to aiter the grid. Ref. 49 notes a general interface system that has been attached to several
general composite-block grid codes, in particular those of Refs. 1,2, and the 2D form of Ref. 5. A number of
other user interfaces have also been reported, cf. Refs. 7,9,16,20-25, and S0, clearly indicative of the importance
ascribed to interactive graphical interfaces to grid generation.

Of particular importance is the addition of automatic topology generation for the construction of the block
structure.  Refs. 10 and 11 use a graphically-interactive interface with topology defined by basic slits in the
computational field corresponding to the various components of the phvsical boundary. A similar approach is
taken in Ref. 13, but with the inclusion of a hypercube topology generation to form the composite-block structure.
These systems allow various block topologies to be included by providing for block faces to be coltapsed to lines
or even points. Considerable interest is being expressed in the use of artificial intelligence to form the block
structure, but only Ref. 51 reports any working system, and that is in 2D.

Paralle! Processors

Interest is naturally developing in applications of grid generation on parallel processors since the composite -
block structure forms a natural domain decomposition within which the various blocks can be assigned to differ-
ence processors, or can by treated as different computing objects. Ref. 34 reports such an application on a shared
memory system of an elliptic generation system using the surrounding layer of points for complete continuity.

4. ADAPTIVE GRID SCHEMES

Finally, dynamically-adaptive grids continually adapt to follow developing gradients in the physical solution.
This adaption can reduce the oscillations associated with inadequate resolution of large gradients, allowing
sharper shocks and better representation of boundary layers. Another advantageous feature is the fact that in the
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viscous regions where real diffusion effects must not be swamped, the numerical dissipation from upwind biasing
is reduced by the adaption. Dynamic adaption is at the frontier of numerical grid generation and may well prove
to be one of its most important aspects, along with the treatment of real three-dimensional configurations through
the composite grid structure.

Adaptive Strategi

There are three basic strategies that may be employed in dynamically adaptive grids (cf. Ref. 52) coupled with
the partial differential equations of the physical problem. Combinations are also possible, of course:

(1) Redistribution of a fixed number of paints.

In this approach, points are moved from regions of a relatively small error or solution gradient to regions of
large error or gradient. As long as the redistribution of points does not seriously deplete the number of points
in other regions of possible significant gradients, this is a viable approach. The increase in spacing that must
occur somewhere is not of practcal consequence if it occurs in regions of small error or gradient, even though
in a formal mathematical sense the global approximation is not improved. The redistribution approach has
the advantage of not increasing the computer time and storage during the solution, and of being straightfor-
ward in coding and data structure. The disadvantages are the possible deleterious depletion of points in
certain regions, and the possibility of the grid becoming too skewed.

{2) Local refinement of a fixed set of points.

In this approach, points are added (or removed) locally in a fixed point structure in regions of relatively large
error or solution gradient. Here there is, of course, no depletion of points in other regions and therefore no
formal increase of error occurs. Since the error is locally reduced in the area of refinement, the global error
does formally decrease. The practical advantage of this approach is that the original point structure is pre-
served. The disadvantages are that the computer time and storage increase with the refinement, and that the
coding and data structure are difficult, especially for implicit flow solvers.

(3 | incr in alg

In this approach, the solution method is changed locally to a higher-order approximation in regions of rela-
tively large error or solution gradient without changing the point distribution. This again increases the formal
global accuracy, since a local increase is achieved without an attendant decrease in formal accuracy else-
where. The advantage is that the point distribution is not changed at all. The disadvantage is the great
complexity of implementation in implicit flow solvers. This adaptive approach has not had any significant
application in CFD in multiple dimensions.

Redistributi

Adaptive redistribution of points traces its roots to the principle of equidistribution of error by which a point
distribution is set so as to make the product of the spacing and a weight function constant over all the points. A
competitive enhancement of grid smoothness, orthogonality, and concentration can be accomplished by repre-
senting each of these features by integral measures over the grid, and minimizing a weighted average of the three.
The one-dimensional form of this leads, in fact, to the equidistribution principle. A second approach is to note
the correspondence between the equidistribution principle and the one-dimensional form of the commonly-used
elliptic grid generation system. This leads to a connection between the control functions in the elliptic system and
the derivatives of the weight function. This control function adaptive approach has the significant advantage of
being based on the same elliptic generation equations that are in common use in grid generation codes, and the
adaptive control functions can be added to those already evaluated from the configuration geometry.

Recent applications of the variational form of adaptation are given in Refs. $3-55, but none of these use
partial differential equations. The last of these bases the formulation on principles of continuum mechanics.

The control function form of grid adaptation is used in Ref. 56 for a general composite-block structure.
Other applications appear in Refs. 57-60. A block-structured adaptive grid is also given in Ref. 61, but with
adaptation to follow streamlines.

One-dimensional adaptation, generally applied in alternating directions in multiple dimensions, is used in
Refs. 62-64. Here both tension and torsion spring analogies are used to control both the grid concentration and
skewness.

Refinement

The addition of points cun be used with structured quadralateral grids, as well as with unstructured griQs. and
Refs. 65 and 66 are recent examples. The latter reference compared grid refinement and redistribution, finding
little difference in the 2D transonic Euler solution considered.

Other Approaches

Adaptation is included in a hypberbolic generation system in Ref. 67, and in a parabolic system in Ref. 59.
Finally, new approaches to grid adaptation are given in Refs. 68 and 69, the former based on harmonic maps and
the latter on parametric mapping on a surface.

S. CONCLUSION
Among the advantages to be cited for the composite grid approach are the following:

(1) ease of treatment of complex configurations.

Zg capability for local refinement and modification.

3) reduced core storage.

4; natural use of different flow equations in different regions.
5) grid singularities can be placed on block boundaries.




A second point is that because of the emphasis on composite grids, the tasks of subdividing the grids, generat-
ing surface grids, and providing interfaces have become more time consuming and critical than the task of
generating the interior - rids. The papers on composite grids in Refs. 70 and 71 either strongly hint at, or explicitly
note, that how a grid ~ buld be subdivided depends on the geometry, the numerical algorithm used, the flow
features, etc. So, given a limited computer resource, the sub-grids of a composite grid must be selected with
care. This implies a learning process and a need for human interaction. Like geometry definition, the tasks of
subgriding, interfacing, and surface grid definition are being assigned to interactive workstations. Various levels
of sophistication in treating these problems in this way are evident in the papers. What is strongly implied is that
these are not simple tasks or ones for which off-the-shelf software is available. This is evidently a pacing area of
research in complex grid generation.

Surface grid generation is seen to have a dominant effect on the quality of the volume grid, to be very time-
consuming, and to be in considerable need of improvement in regard to the specification of boundary data sets
and the interactive manipulation thereof. Surface definition continues to be a pacing problem. There is a feeling
g\gb more emphasis should be put on the development of CAD geometry tools especially suited to the needs of

The topological definition of the block structure is seen to require considerable experience and to be difficult
to teach. There is need for automation of this process, perhaps through the use of artificial intelligence or other
means.

The critical need for graphical interaction, especially in regard to surface grid generation, block definition,
and grid control is evident. Codes should have an efficient and effective user interface with error—checking and

on-line instruction. The process of grid generation for complex configurations still requires too large an amount
of man-time.
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ABSTRACT

An algebraic technique for generating block-structured grids of arbitrary topology is des-
cribed. The method is based on a macro-block concept which allows the usage of large blocks
with partial block boundary interfacing. Various spline procedures are used for curve gene-
ration and for constrained surface grids whereas all unconstrained surfaces and volumes are
gridded by transfinite interpolation. Instead of using derivative information to control
the grid in each block the present method is based on the idea of generating as many inte-
rior guiding surfaces as required for grid control and gridding each resulting sub-block
independently of other sub-blocks. The resulting metric discontinuities, both inside blocks
and between blocks, are smc.othed either by a local algebraic smoothing procedure or by a
global elliptic type smoothing procedure or combinations of both. The complete method has
been coded in a highly modular way and includes all graphics routines. Several 3-D multi-
block grid examples are presented and discussed,

INTRODUCTION

In recent years a number of general purpose computer codes for the generation of 3D mu%g}:
block structured grids with arbitrary topologies have been presented in the literature™ ™ .
Although much work evidently has been spent on making these codes as easy to use as possi-
ble, the problem of automating various features such as the block-structuring process for
arbritrary geometries is still unsolved. Since a satisfactory solution to these automation
problems seems to be several years ahead in time, it is fair to say that the existing grid
codes are really tools with which the experienced user generates whatever grid he can envi-
sion and is able to create. In other words, the user's experience and skills with any given
grid generation tool are just as important as the actual tool. The tools may differ in terms
of how quickly the average user learns to use them satisfactorily or in terms of what the
experienced user can accomplish with them, but in all cases the end result depends to a
large extent on the user's skills, motivation, experience, knowledge of the overall problem,
etc. It seems unlikely that this situation will change significantly in the near future.

The purpose of this paper is to present the authors' own versionof a 3D multi-block grid code
(G3DMESH) and to demonstrate some of its capabilities. It is similar to other such codes

in that it is essentially a grid generation tool. In fact, it is more like a toolbox with
all the tools necessary for defining block structure, generating grid curves, grid surfaces,
grid volumes, exercise grid smoothing, metric checking, graphics, block redefinition, disc
storage, etc. Although some features of the code are based directly on the first author's
previous work in this area®®’, many new features are also included. In the following para-
graphs we first outline the overall method, then give some grid examples, and finally some
concluding remarks.

OUTLINE OF METHOD

Block structure

The present multi-block grid generation scheme is based on a "macro-block" concept in which
block sizes are not constrained by block interfacing. This fea*ure is achieved by allowing

"partial boundary interfacing", i.e. any part of one block boundary may be connected to any
compatible part of another block boundary. In most applications this flexibility allows the
user to define much fewer and larger blocks than would be the case with "complete boundary

interfacing”. An illustration of this effect is given by a 2D example, a C-type grid around
two airfoils (Fig 1). Here it is seen that with complete boundary interfacing a minimum of

16 blocks is required whereas only 3 blocks are needed when partial boundary interfacing is
allowed. This difference is even more pronounced in 3D applications.

The advantages of the macro-block approach are obvious, not only for the grid generation

phase itself but also for the equation solution phase. There are fewer blocks to keep track
of, a smaller number of interfaces to be defined, less boundary overhead and more efficient
vectorization in the equation solver. A potential disadvantage of the macro-block approach
is the fact that partial boundary interfacing is slightly more complex than complete boun-
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dary interfacing. However, in the present method a very efficient partial boundary inter-
face scheme has been devised, both for the grid generation code and for the equation sol-
ver, which effectively solves this problem. Each interface is defined by two sets of data,
one for each side of the interface. These data sets consist of eight integers; four inte-
gers to define a reference corner point, two integers to define two directions and two
integers to define two dimensions (Fig 2). In special interface routines this data is used
to set up a complete mapping between the reference grid system and a local interface grid
system which spans across the interface in question. Any operation which needs to be car-
ried across the interface is easily done so using this mapping.

Grid generation

The present grid generation procedure is based on the idea of "piece by piece" building of
the desired grid blocks®’, That is, each grid block may be built up in several steps where
each step constitutes a specific operation such as curve generation, surface generation,
volume generation, etc. The tools which perform these operations are completely general
and ray be applied to any grid block or part of a grid block. In other words, grid curves
and grid surfaces can be defined in the interior of a block as well as on its boundaries.
This feature is very useful since it allows the user to introduce any desired grid control
in each block.

Constrained grid curves are here generated using cubic spline interpolation whereas uncon-
strained curves are usually generated by two-point splines with optional direction control
at the end points. As mentioned above a grid curve can be defined in any desired location
in any desired block.

Constrained surface grids can either be defined using bicubic spline interpolation or else
read from external files. The latter option is often used for more complex geometries where
intersections between various independently defined surfaces must first be determined. In
the present version of G3DMESH there are no such CAD/CAM tools included. Unconstrained sur-
face grids are generated either as multiple curves or by transfinite interpolation, depen-
ding on whether two or four boundary curves are defined. In the latter case arc-length
weighted blending functions’ are used for optimal results. No derivative information is
used in the present version, i.e. only the bounding curves are used in the transfinite
interpolation procedure.

Volume grids (fully defined blocks or sub-blocks) are here generated by transfinite inter-
polation, again using arc-length weighted blending functions. Two different options are
implemented, one for the case when only four bounding surfaces are defined and one for the
case when all six bounding surfaces are defined. As in the surface generation case no deri-
vative information is used in the transfinite interpolation procedure, only the grid points
of the bounding surfaces. At first sight this might be seen as a severe limitation since
the use of derivative data is a very effective way of controlling the grid®. However, the
possibility of generating interior grid surfaces in any desired block and applying the vol-
ume grid generator in between these guiding surfaces makes the present approach just as
powerful as any method using derivative data.

Grid smoothing

Due to the "piece by piece" building of the complete grid system there will in general be
several metric discontinuities, both inside blocks and between blocks. If the psysical
boundaries have metric discontinuities such as edges or corners these will also spread
into the domain. This situation is usually unacceptable, at least for finite-difference or
finite-volume equation solvers, and some smoothing has to be applied to these metric dis-
continuities. In the present method there are two alternative "tools" for grid smoothing;
a local algebraic smoother and a global elliptic type smoother. The local smoother is a
one-step projection type procedure based on transfinite interpolation with cubic blending
functions in the direction normal to the discontinuity’. It is a computationally efficient
smoother which is easy to apply for "concentrated" metric discontinuities, i.e. disconti-
nuities that are confined to certain grid surfaces or block boundaries. A disadvantage
with this smoother is that the user has to specify the region where it is to be activated,
but the great advantage with it is the fact that it is entirely local and thus does not
alter anything outside the active region.

The other grid smoother is, as was mentioned above, a global elliptic tyge smoother. It is
based on the standard spatial operator used for elliptic grid generation

D r = r + B r + ; + 6 ¢ + pa + T 1
R 43 Ten ¥ Y Ty Ton ¥ € T v O T M
where
r = (x,y,2)
a = (DF-E?) ; 8 = 2(EC-BF) ; Yy = 2(BE-CD)
§ = (AF-C?) ; <« = 2(BC-AE) ; ¢ = (AD-B?)
- -> > +> -+ -+
A =xr_ o H = . H = .
£ rE B rg r“ C rg rc
D =7 °F ; E =T oF ; F = ¢ T

noon n g [ SN 4




s
v
'

together with a Jacobi iteration scheme

zin+1} _ ;(n) + A(D ;)(n) (2)

where the locally determined relaxation parameter is chosen such that high spatial fre-
quencies are damped as quickly as possible. The purpose of this procedure is not to try

to solve the nonlinear elliptic equations, only to take enough iteration steps to damp
out metric discontinuities. In the present version no source terms are used which means
that usually about 20 steps can be taken before undesirable changes in the grid begin to
appear. However, in all cases tried so far this has been more than sufficient to eliminate
all visible discontinuities. This smoother is simpler to apply than the local one (only
the block interfacing data is needed) and has the additional advantage that it usually
corrects any local grid inversions that may have been created in earlier stages. However,
it is not as computationally efficient as the local smoother.

Additional features

There are of course many additional "tools" in the G3DMESH grid code. For example, there
are checking routines which "measure" various guantities such as cell volumes, grid spa-
cings, directions, etc. Several graphicsroutines are available, both for plotting curves
and surfaces with any desired viewing angles. Special routines are also included with
which the user can duplicate curves/surfaces and translate/rotate them in any desired
manner. Block interfaces with periodicity conditions are also included so that grids for
turbomachinery applications car be generated. One of the latest additions to the code is
a "reblocking" option, i.e. a possibility of changing the block structure for a given grid
system. Since most grid systems have non-unique block structure (at least in the macro-
block case) it is often advantageous to use one block structure for the grid generation
phase and another one for the equation solution phase. A 2D example which demonstrates
this is shown in Fig 3; a C-type grid around an airfoil/flap combination. A five-block
grid is the natural choice for generating the grid (with the present method, not necess-
arily with other grid codes) whereas a three-block grid is more natural for the flow sol-
ver (at least for the authors' flow solver).

Code structure

The grid code G3DMESH is built around a global data base containing the block structure
and grid points, All arrays are one-dimensional and a pointer system is used to convert
between block mode addressing (which is all the user needs to worry about) and seguential
mode addressing cf grid points. Each function or cooi which the user can call upon con-
sists of a subroutine which accepts certain input from the user and in return works upon
the data base and performs whatever task it is designed for. This highly modular code
structure makes it easy to include new or improved subroutines whenever the need arises
without invalidating the old functions.

EXAMPLE GRIDS

The present grid code, G3DMESH, has been applied to a number of different cases and has
turned ocut to be a very powerful and versatile grid generation tool. As a first demonstra-
tion we present the case of a simple wing-body combination (Fig 4). Here we have used a
two-tlock grid which is of O-type around the fuselage and H-type around the wing. This
grid system was built by generating four interior grid surfaces in each block in addition
to the block boundary surfaces, a task which was easily and quickly done by using the curve
generators and transfinite surface interpolators. The purpose of these interior surfaces
was to control the grid around the wing in terms of spacing and orthogonality. A concen-
tration at the leading edge, trailing edge and tip of the wing was desired and achieved
through this technique. In this case only the local algebraic grid smoother was used,
mainly to demonstrate that it is possible to achieve smooth grids with purely algebraic
methods. However, the global elliptic smoother described in the previous section performs
equally well, with less input data but with more CPU time. Typical execution times when
running the complete session file from start to finish are about 30 CPU-seconds on a VAX
8700 with the algebraic smoother and about 5 CPU-minutes with the elliptic smoother.

Next we present two more "realistic" cases; the proposed HOTOL aerospace plane and an old
version of the HERMES reentry vehicle (Fig 5). The same type of two-block grid structure

as in the previous case was used for the HOTOL geometry whereas a single block grid was
used for the HERMFS geometry. Only the algebraic smoother was applied in these cases. Flow
solutions (Euler .:omputations) have been obtained on these grids, using our own multi-
Llock time-marchiig Euler solver G3DEUL, and various aspects of the computed flow fields
such as shocks and total pressure loss indicate that the presented grids are realistic in
terms of relative spacings and orthogonality at surfaces. An item which may be of interest
in this context, although not directly grid related, is the performance obtained with the
Euler code on this type of macro-block grid. In several cases, involving single-block grids
up to six-block grids and grid sizes from 50000 to 150000 points, the multi—blogk Runge-
Kutta cell-centered finite-volume Euler code G3DEUL has achieved about 25 * 10~° CPU-
seconds / grid point / time step on a Cray X-MP computer (single processor mode). This
figure is only about 30% higher than that for the corresponding old special purpose single-
block code. We feel confident that this relatively small overhead is due to the macro-
block technique and the efficient partial block boundary interfacing.
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The next example is an isolated supersonic intake geometry designed for a free stream Mach
number of 2.75 (Fig 6). The reason for choosing this case is two-fold: Firstly the flow in
the near vicinity of and inside the intake is important in itself and a good grid in this
area is always desirable. Secondly the interference between fuselage / wings and the in~
take is also important and a grid structure which allows the gridding of the complete fuse-
lage / wing / intake geometry is thus desirable. The grid presented here was primarily de-
signed for the first task but with the second task in mind, i.e. it 1is compatible with such
a "total" grid. As may be seen in the grid plot the interior of the intake is gridded as
one block with a wedge-type singularity at the beginning of the compression ramp. The ex-
terior region is then decomposed into three blocks, giving an H-type grid. Euler computa-
tions verify that this grid structure is sound and gives an accurate representation of the
geometry.

Finally, we present a more complex geometry; a schematic wing / body / air intake combina-
tion (Fig 7). Although not very realistic in terms of scale, this model has many of the
features of a real world fighter aircraft. The supersonic intake with boundary layer diver-
ter is here an important characteristic which the grid system must be able to cope with.

We have here chosen a 12-block grid to model the complete geometry. One block covers the
diverter region and a wedge-shaped region upstream of it, another block covers the interior
of the intake (as in the previous case), five blocks cover the near region around the fuse-
lage / wings / intake and finally another five blocks cover the remaining reyion out to the
outer boundary. Only the global elliptic smoothing was used here and the intersection plots
clearly show the effects of the smoothing between grid blocks.

CONCLUSIONS

The grid examples presented in this paper demonstrate that the algebraic method described
above is a powerful grid generation tool. The combination of a user-controlled "piece-by-
piece" building approach, transfinite interpolation and local/global grid smoothing proce-
dures makes it possible to input, in a very direct and easily understood manner, any degree
of grid control needed and to smooth out any metric discontinuities, inside blocks or bet-
ween blocks. A highly modular code structure ensures that improved or new functions can

be addied to the code without invalidating previous functions. The generality of the data
base¢ used in the code also ensures that any new or improved future techniques can be easi-
ly implemented.
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Fig 1la.

C-type grid around two airfoils
using the macro-block concept
(partial block boundary inter-
facing).

Fig 2.
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Fig 1b.

C-type grid around two airfoils
using the micro-block concept
(complete block boundary inter-

facing).

Reference corner point
+ two directaons (IP,JP)

+ two dimensions (IPmax, JPmax)

Interface data
(one set for each block)

Interface data which defines a partial block boundary interface.
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Same as above but with reblocked grid to obtain block structure
more natural for flow solution
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3-0 BLOCK-STRUCTURED GRID FOR SUPERSONIC INTAKE GEOMETRY

NC. OF BLOCKS: 4

GRID SURFACE EXAMPLE
BLOCK 2
ILLUSTRATES HOW THE
GRID SYSTEM SURROUNDS
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Four-biock grad around and inside a 2D supersonic intake Interaor
block has a wedge-type singularity along the leading edge of the

ramp Outer grid biocks are compatible with a total grad around
complete fuselage/wing/intake
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1 SUMMARY

Techniques and applications of algebraic grid generation are described. The techniques are univariate interpolations and
transfinite assemblies of univariate interpolations. Because algebraic grid generation is computationally efficient, the use of
interactive graphics in conjunction with the techniques is advocated. A flexible approach, which works extremely well in an
interactive environment, called the Control Point Form of Algebraic Grid Generation is described. The applications
discussed are three-dimensional grids constructed about airplane and submarine configurations.

2 INTRODUCTION

The numerical solution of fluid flow problems is directly dependent on the discrete representation of the solution domain.
A discrete representation is called a grid or mesh, and the term grid will be used throughout this paper. A grid is a set
of points and an implied rule or an explicit table specifying the connectivity of the points. If the implied rule is an index
system[1] which is associated with the computational domain, the grid is said to be structured, and the neighboring points
of a given point are implied by the preceding and following indices. If the points are irregularly distributed over the solution
domain. and there is no rule implying which points are neighbors, then the grid is said to be unstructured. In this case, a
table called a connectivity table must be created to specify which points are neighbors.

A numerical solution technique for the governing equations does not have a preference for how a grid is generated, but
solution software must be developed in accordance with the topology of the solution domain and the structure of the grid. A
grid covering a solution domain can consist of several structured blocks, in which case, the connectivity of the blocks must be
specified. If the grid is unstructured, then the connectivity of the individual points must be specified. It is also reasonable that
a solution domain be covered by a combination of structured and unstructured grids{2]. In any event, it is quite important
for the accuracy of a solution that there is an adequate number of grid points to cover the solution domain, that the grid is
boundary-fitted. and that the grid points are concentrated in regions where there are high gradients in the solution(3]. It is
also important that the spacing between points varies smoothly, and that the the skewness not be excessive(4].

Algebraic grid generation techniques are interpolation or approximation procedures that relate a computational domain,
which is a rectangular parallelepiped (a square in two dimensions and a box in three dimensions), to an arbitrarily-shaped
physical domain with corresponding sides[3]. A side in the computational domain can map into a line or point in the
physical domain, in which case, a singularity occurs in the mapping. Singularities do not pose a problem to finite-volume
techniques([5], which dominate current solution approaches for fluid flow, nor do singularities affect solution techniques that
use unstructured grids. The interpolations are univariate functions of the individual coordinates in the computational domain,
which are combined in a Boolean sum to create the complete transformation. Often, for a particular application, a higher
order and more sophisticated interpolation is used in one coordinate direction, which we will call the primary coordinate
direction; and low order interpolation, such as linear interpolation, is used in the remaining coordinate directions.

There are as many ways to generate algebraic grids as there are interpolation methods. It is impossible to cover all
methods, but general characteristics of transfinite assemblies of univariate interpolation are briefly reviewed. A newly-
introduced method called the Control Point Form of Algebraic Grid Generation is described.

Algebraic grid generation methods are very efficient and work very well in conjunction with interactive computer graphics.
The application of the Two-Boundary Technique in an interactive environment is discussed. Also, the Control Point
Form of Algebraic Grid Generation is advocated for interactive applications.

Applications of algebraic grid generation are varied. Herein, we present applications of the Two-Boundary Technique,
Control Point Form of Algebraic Grid Generation and Lagrangian Interpolation in the context of Transfinite
Interpolation. The applications are three-dimensional grids about airplane and submarine configurations.
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3 TRANSFORMATIONS AND GRIDS

Generally speaking, all algebraic grid generation techniques can be thought of as transformations from a rectangular
computational domain to an arbitrarily-shaped physical domain. This is shown schematically in Figure 1 and as a general
equation:

y(&n.¢)
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A discrete subset of the vector-valued function: X(§,, n,, ¢} is a structured grid for

X(&,m, ¢)=
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where i =1,2,3---, L, j=123,---, M, and k = 1,2,3,--, N. The relationship between the indices i, j, and k and
the computational coordinates £.7, and ¢ uniformly discretize the computational domain and imply a relationship between
discrete neighboring points. The transformation to the physical domain produces the actual grid points, and the relationship
of neighboring grid points is invarient under the transformation.

An unstructured grid can be defined on the computational domain by subdividing the domain nto triangles in two
dimensions and tetrahedrons in three dimensions. A tetrahedron is defined by four points and has four faces. The #**
tetrahedror is denoted by

. = |[|F,K R, F},
where 1 = 1,2,3...., 1, and the four faces are each defined by three points
F)I = x]l(fh']h(&) »

where i =1,2.3,---,1, 7=1,2,3,4, and k = 1,2,3. A table must be created such that

F, <& TABLE = F,

i # 1
If the computational domain is discretized in an unstructured manner, then the grid points in the physical domain have
the same unstructured relationship. This is because of the invariance of the relation between points under the transformation

expressed in the general form of the first equation. Thus, algebraic techniques are capable of producing either a structured
or an unstructured grid.

For complex physical domains where structured grids are employed, it is most often necessary to create many blocks(1],
where each block has the general form of Eq. 1. In this case, the connectivity of the blocks must be specified. That is, an
explicit table is generated which denotes the blocks and the corresponding grid points at block interfaces. Two approaches
that are also multi-block, but do not use exact grid point overlap are; the Conservative Interface Approach(6] and
the CHIMERA (7] grid scheme. In the conservative interface approach, grid points from different blocks meet at common
interface surfaces but the grid points do not coincide (Fig. 2). Variables in a flow solution are transferred from one block
to another in such a manner that the variables are conserved. In the CHIMERA scheme, grid blocks overlap, and in a flow
field solution, variables are simply interpolated from one block to another without assurance of a conservation property.

The primary advantage of structured grids is simplicity. When the number of structured grid blocks becomes large, the
simplicity is lost. In order to maintain simplicity where it i3 needed, such as in a boundary layer, and to accommodate
geometric complexity, it is likely that combinations of structured and unstructured grids will prevail.




Figure 2: Discontinuous Grid Interfaces

4 TECHNIQUES

The interpolation methodology that dominates algebraic grid generation is called transfinite interpolation. This method-
ology was first described for grids by Gorden and Hall (8], and the advantage is that it provides complete conformity to
boundaries. Transfinite interpolation has since been described many times(1,3,8,9). However, a basic description is included
herein so that specific grid generation techniques that are characterized by this methodology can be discussed.

The ingredients of transfinite interpolation are univariate interpolations in the computational coordinate directions defined
by

L

U0 = T areT2end)

1=1n=0 6{"

- 3 X
Ve =3 3 o T,
Wien0 = ¥ 3 ok T

(D a7 )&) = 6;6u,  (D™Br)1,) = 6,;6mm, (DG = 64460,
i=1,2--,L, j=1.22

1,2,--. M,
a=01,---.P m=0.1,-.Q, ¥¢=0.1, R
where D is a derivative operator. The tensor products are
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The commutativity in the above tensor products is assumed in many practical situations, but in general, it is not guaranteed!
It generally depends upon the commutativity of the mixed partial derivatives. For the grid generation techniques that are
characterized by transfinite interpolation, they can be written as the Boolean sum

X(mn=UsVeWws=
U+V+W-UV-UW-VW +UVW.

In the above equations, o} (£), A7 (1) and ¥;(¢) are interpolation functions subject to § function conditions. The defining

parameters ‘%_“—;{'{'ﬁin the equations are positions (when i =m = n = 0) and partial derivatives (otherwise) in
the physical domain which are user specified. In this definition, the implicit assumption is that coordinate curves are to be
interpolated along with their derivatives. This occurs through a network of intersecting surfaces that must be specified. By
taking derivatives of this interpolation-theoretic framework, the interpolation functions, then specified, will have an effective

meaning only for derivatives - not for the surfaces. The result will be an approximation rather than an interpolation.

Under the umbrella of transfinite interpolation, there are many possible algebraic grid generation techniques. The most
successful techniques. however, have been those that provide adequate orthogonality control and grid spacing control with
acceptable functional complexity. For instance, the two-boundary technique described by Smith[10] uses Hermite cubic
interpolation functions in one coordinate direction between two opposing boundary surfaces. In the iwo remaining coordinate
directions. linear interpolation between opposing boundaries is specified. In a similar philosophy, Eriksson, in many of his
applications of transfinite interpolation{11], has used Lagrangian interpolation functions, where two, three, or four surfaces
are specified in each coordinate direction. He has also used positions and derivatives at opposing boundaries[9].

A popular grid generation technique is the multisurface method described by Eiseman([12-15]. It is a very flexible univariate
scheme which is similar to Bézier and B-Spline approximation {16-17], where the parameters defining a curve are not on the
curve. In the latest version of the multi-surface method, the blending functions o,(€), 3,(n) and v.(¢) are nontrivial only
over a local region. This means that the position parameters inside the region affect the grid in a local manner.

Recently, Eiseman introduced the Control Point Form of Algebraic Grid Generation (CPF)[18] which is a multiple
variable multi-surface transformation. In this approach, a sparse grid, denoted by q,,., is first generated. g,,, can be obtained
quite simply by a transformation defined by linear interpolation functions in the transfinite interpolation methodology which
blends specified boundary data into the interior region. Alternatively, it can be obtained by attachment to any given grid.
regardless of how the grid was generated. Attachment is simply the process by which control points are placed in order to
essentially reproduce a given transformation or grid. The chosen number of control points for each direction is dictated solely
by the amount of control that a user wishes to specify. It is independent of the chosen number of grid points.

In keeping with the previous notation and interpolation structure, the univariate multi-surface transformations in the
three coordinate directions are

U &L, 09X
B " ;(Da.)(f) 5|,
12A% M [2).¢
T E(Dﬁf)(n) B o
W XL . 8X
i ;(D‘h)(C) i o

where
a} =0 forn#0, 37 =0 form#0, 1y =0 forl#0

In this situation, it is the coefficients of the X derivatives, which are specified to interpolate those derivatives at successive
stations in the curvilinear variables. For example, in the first equation, the specification is for (Da®) rather than af. It is
simply the derivative which gets the Krouecker delta condition rather than the function a®. In formal terms, this is stated as

(Da})(€m) = bym (Dﬂ,o)(”m) = by, (D7:])(Cm) = bim.

Upon integration together with the requirement that opposing boundaries are precisely adhered to, we get a sequence of
intermediate surfaces for each direction that appear in the form

L
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wind wliere the constructive surfaces are reiated to the grid array X by
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More details on this process can be found in Eiseman {15].

The primary control over the grid is exercised by the prescription of the surfaces A,, B, and C,. This is done for boundary
conformity and for the shape of curves connecting opposing boundaries. The specification of surfaces, however, requires a
substantial amount of data, and accordingly, there is the problem of efficiently creating or manipulating them for the purpose
of generating grids. This problem is inherent in any algebraic technique that requires data in addition to the specification
of the boundaries. This includes the specification of derivative data only at the boundaries; for there, a vector specification
must be dealt with at each boundary point - an equivalent problem to that of specifying an entire surface.

While such specifications may not present an extreme burden in unidirectional techniques, they grow substantially with
a straight-forward multivariate assembly represented by the process of transfinite interpolation. This burden is particularly
accute in three dimensions where the specifications are for surfaces rather than for curves which would be the requirement
in two dimensions. In the straight-forward assembly, we must deal with the art of constructing surfaces or curves in each
coordinate direction together with the details of consistency between the surface or curve parameters for the distinct directions.

To overcome the burdensome constraints of dealing with constructive surfaces or curves in a consistent manner, we are
lead to the The Control Point Form of Algebraic Grid Generation (CPF). The central idea is to replace the surface
or curve specifications with sparse arrays of control points that can be used to generate the required surfaces or curves with
the same scheme that is employed between surfaces. Moreover, a control point array is used to generate the requisite surface
or curve data in all directions. This, accordingly, removed the need to deal with a consistency problem.

In our discussion, we will follow the development in Eiseman [18], but will depart from that discourse by first casting
the multisurface transformation in a surface weighted format that comes from a minor shuffle of terms. For the ¢-direction
construction, we have

U6n.Q) =1~ af(O)]Ai(n.Q) + [af(£) - o2(E)]AZ(n. )
+ [0g(€) — a5 (E))As(n.¢) + -+ + ol (E)AL.i(n. (),

and by the same shuffle we get the parallel expressions for the 5 and ¢ directions of V and W respectively. Altogether, we
arrive at the form

U(E,n.¢) = 3_ alOA.(n.C),
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In this format, the conditions for matching the faces of opposing boundaries are expressed by the pairs of equations:

AmO = Xm0
{Am(n,c) = X(&.m0) }
B(6C) = X(Em.o)
{BM(e.c) = X(Enw.0) }

{Cl(&n) X(6.1,6,) }
Conrlem) = X))

That is. one pair of opposing boundaries is matched for each respective £,7 and ¢ directional constructs as independently
represented by U, V and W.

To develop the CPF, we assume that there is a sparse array of control points

{@ue:i=12 . L+1, j=12... M+l k=12 N+1},

where immediately we see that any normal sequence of control points can be used to generate a curve which connects the
first and last control points of the sequence. Those curves are given by

L+

a, () = Y 0, (6)q,

M+l

b.(n) = Z 3 (n)qux.

Nl

¢, (Q) = 3 (¢l

k=1

By using these curves, however, we can continue and generate surfaces which match control points at their corners. These
surfaces are given by

AMO =3 3 8mmQa
; BAEO=3 3 al)n(Oan.
‘ L:I M‘oll
H Ck(Evn) = 0-(5)5;(71)‘1«::.‘

t=) y=1

where now we use this notation also for the end condition (i = lor L+ 1, j=10or M+ 1, k =1o0r N 4 1) rather than
the specifications in the original statement of the multisurface transformation. The multisurface transformations are now
written as
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N oling wany thie swlicos Ay, B, or $ i the consiruction of vhe multisurface transiolmailon, we get a transtormation
that is solely determined by the control points. It is called the tensor product transformation and is given by
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This determines the volume grid for the control points. By inserting it into the the multisurface constructs just given, we get
U(Ev”v() - T(f 7, C) + 01(5 [ (51117 () - Al(’)v()]+01L+1(5)[x(5u7h<) - AL+l(r’| ()]~
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This form is particularly instructive since we can now explicitly view the issue of boundary conformity in each direction as
being controlled by an adjustment term for each face of a cube. That adjustment represents the deviation from a pure control
point representation to one of an exact boundary specification.

In a similar spirit, we wish to examine the tensor product of any two of the constructs with the given adjustment terms.
To avoid repetitive manipulation, the tensor product UV will be expanded and will set the pattern for UW and VW. The
expansion proceeds by first applying U to V instead of X whereby UV becomes

TEn.C) + a(€) {V(E.n.Q) — Ai(n,Q)} + a (V.00 — AL (n,Q)

With some algebraic manipulation and relabeling of control point entities, we have

UV = T n.¢) + a(O)F(M{X(&.0.¢) - ¢ (O} + @l©)du () {X(&m () = Crwai(O)}
+ap ., (§)3i(n {x E.mC) — (O} + ap (6B (MHX(EL 1 . C) — Coosm ()}

which. as in the case of boundary faces, explicitly separates out the boundary edge blending terms relative to the pure control
point dependency represented by the tensor product T. Those edges are the cube edges in ¢ that are transverse to the tensor
product in £ and 7 represented by U and V as UV.

By applyving the established pattern to UW and VW we can evaluate the Boolean sum

UdVOoW=U+V+W-UV-UW-VW + UVW,

which reduces to a tensor product core represented by T along with a simple adjustment term for each face or edge of the
grid block. Each adjustment term appears as a blending function times the difference between the specified boundary part
and the corresponding control point representation for the same part. When the part is an edge in one variable, the blending
function is the product of the closest surface coefficients in the remaining two variables. When the part is a face in two
variables, the blending function is just the coefficient for that face in the expansion for the remaining variable.

When the adjustment terms corresponding to a combination of edges and faces is dropped, the effect is a dependency
only upon control points for those corresponding parts of the boundary. The practical implication is that any combination
of specified and free formable boundaries can be employed. This is in sharp contrast to traditional transfinite methods.

One final observation is evident from the surface weighted format employed in our discussion of the control point formu-
lation. It is simply that the weighting functions a,, 3, and v, could have been chosen arbitrarily rather than in the careful
way done here. That care comes from the multisurface construct which amounted to the interpolation being applied to the
tangent vectors for our curve and, accordingly, accounting for curvature control in a direct manner. The common Bézier and
B-Spline methods, by contrast, only have a convex hull property. This is essentially a much weaker form of curvature control.
Nonetheless, we can also use such methods in the cantrol point form. To use the Bézier functions (Bernstein Polynomials),

we need only set
L+l 1 L+l~y L 1 —-—-L_l).
a,(6)=( ; )f(l—f) - ( T ):(L(+l—-i)!i!‘

and 0 < € < 1. Similar expressions would result for 8, and v,. In continuation, Lagrangian interpolation can be applied, or
some mix of various interpolation and approximation types can be used for the distinct directions represented by a,, 4, or

Ye-




- ———

Figure 4: CPF Sparse/Resultant Grid

5 INTERACTIVE GRID GENERATION

As it has been previously stated, algebraic grid generation techniques are computationally efficient. They are, therefore.
ideally suited for an interactive environment. The two-boundary technique [19] and the CPF [18,21]technique have been cast
in this environment for two-dimensional and quasi three-dimensional applications. In the two-boundary technique, displays
and control functions (Fig. 3) are interactively created and the grid and grid characteristics are computed in sequence and
visnally inspected.

In the case of the CPF approach. a nominal grid is displayed and a sparse control net is bold-faced and superimposed onto
the nominal grid (Fig. 4). Using an interactive device {mouse and cursor} a particular point in the sparse net is identified and
moved to another position. In sequence, a new primary grid is computed and displayed. The creation of control functions in
the interactive two-boundary technique and the movement of control points in the CPF technique can be performed in real
time using a state of the art workstation such as the IRIS 3030. That is, a response to input is computed and displayed
as fast as the user can change the input. As workstations become faster and frame buffers[21] connected to supercomputers
hecome available, the entire interactit2 grid generation process will likely be in real time.

6 APPLICATIONS

The generation of structured grids about three-dimensional configurations such as airplanes or submarines requires several
planning and construction steps{22]. We assume that there is some original definition of the configuration, such as component
cross sections or patch data base[23]. Given the configuration, the first step is planning the topology, which includes the
number, location and connectivity of grid blocks. The second step is the determination of a suitable grid on the surface of
the configuration. The third step is the construction of intermediate and far field surface grids that correspond to block
faces. The fourth step is the interior grid generation for the blocks.

The tools of algebraic grid generation are techniques as described above and software designed to apply the techniques in a
specific setting. The terminology specific is used to indicate that the software can be applied to a particular configuration
or class of configurations without changing the source code. There is general software for grid generation, for instance,
the EAGLE code[24]. The EAGLE code authored by Joe Thompson et. al. encompasses both transfinite interpolation
and differential methods [25]. Boundary definition is interpolated to the intemor of blocks using Lagrangian interpolation
functions, and the resulting algebraic grid can be smoothed using differential methods. It is the authors’ conjecture, however,
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Figure 9: Wing-Fuselage Grid Surfaces

to generate a grid on the four blocks as seen in Figure 9 after a surface grid has been obtained. Reference 22 provides details
on this grid generation.

H-type topology is more suitable for grids about fighter aircraft configurations with lifting surfaces that have sharp leading
and trailing edges. It is also desirable to concentrate grid points about the edges. Eriksson [11] has proposed a dual-block
topology for fighter airplanes with highly-swept cranked wings. After generating the surface grid, custom software, based
on transfinite interpolation and Lagrangian interpolation functions, has been written by Eriksson for the configuration in
Figure 6. Grid surfaces about this configuration are shown in Figure 10. More information about the grid generation and
incompressible flow about the configuration can be found in References 11 and 26. The same topology has been been applied
by Smith and Everton in an interactive environment to a modified F-18 configuration. In addition to Lagrangian interpolation
with exponential controls, intermediate and far field boundaries are determined interactively. Figure 11 shows grid surfaces
about the F-18 configuration, and more detail can be found in Reference 27.

Figure 10: Grid Surfaces About a Cranked-Wing Configuration
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Figure 11: Grid Surfaces About a Modified F-18 Configuration

Figure 12: Grid Surfaces About A Submarine Configuration

The last application is grid generation about submarines. This application is similar to the transport airplane configuration
where the hull corresponds to the fuselage. and the sail corresponds to a shortened wing. In addition, there are sail planes
and stern components in a submarine configuration. Abolhassani and Smith have proposed a topology for submarine
configurations|28] and a sample grid is shown in Figure 12.

7 CONCLUSIONS

Algebraic grid generation is a very powerful and a flexible way of discretizing flow field domains. The concept of forming
a boolean sum of univariate interpoiations is the basic methodology underlying algebraic grid generation methods. Either
structured grids or unstructured grids can be generated with algebraic methods. Algebraic techniques work well in conjunction
with interactive computer graphics. The CPF method, in particular, is highly flexible and suitable for an interactive
environment. Three-dimensional applications of algebraic grid generation require several steps, but algebraic techniques
are capable of producing discretizations of virtually any domain, given enough blocks. The problem that arises and inerits
consideration is the trade-off for using many structured blocks, a single unstructured representation, or a combination of
structured and unstructured blocks.
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RESUME

Cet article décrit les méthodes utilisées a aerospatiale Division Engins Tactiques pour calculer
numériquement l'aérodynamique des missiles dans un cadre industriel. L'accent est mis principalement sur les
problémes de liaison entre géométrie et maillage. Aprés quelques considérations sur la Conception Assistée par
Ordinateur (CAO) et son emploi dans une procédure de maillage, deux chaines de calcul sont présentées. La
premiére, basée sur le principe de la marche en espace, est destinée aux calculs supersoniqués et la seconde
propose une approche multidomaine pour les calculs subsoniques et transsoniques. Des exemples de maillage et
des résultats de calcul pour diverses configurations sont produits pour illustrer les deux procédures.

ABSTRACT

This paper describes the methods which are used at gerospatiale Tactical Missiles Division in order to
calculate missile aerodynamics numerically in an industrial way. The problems in linking geometry and mesh arc
stressed. After a few comments about Computer Aided Design (CAD) and its use in a mesh generation scheme, two
procedures are presented : the first one, based on the space marching principle, is designed for supersonic flows and
the second one proposes a multizonal approach for transonic and subsonic flows. Mesh examples and flow results
are given for different types of configurations in order to illustrate the two procedures.

1 INTRODUCTION

L'aérodynamique des missiles tactiques est fortement tridimensionnelle et essentiellement non linéaire : la
géométrie d'un missile étant trés ramassée autour de son 2xe longitudinal, il se produit de fortes interactions entre
les différents éléments, et des décollements importants et de nombreuses ondes de choc peuvent apparaitre
(Référence 1). De tels écoulements sont restés longtemps hors de portée des méthodes numériques si bien qu'elles
sont apparues plus tardivement chez les missiliers que chez les avionneurs. En outre, comme les formes des missiles
sont restées simples trés longtemps (axisymétriques et cruciformes) et leur structure restée rustique (peu
d’optimisation), les méthodes semi-empiriques allies aux essais en soufflerie se sont avérées suffisantes pour
répondre aux besoins des projets.

La nécessité de méthodes numériques n'est vraiment apparue chez les missiliers qu'au début de la
décennie pour prédire l'aérodynamique globale des formes compliquées (missiles aérobies, par exemple) et
l'aérodynamique répartie, inaccessibles par les méthodes semi-empiriques. Pour des considérations de colt de
calcul, ce sont d'abord des méthodes de singularités qui ont été utilisées, mais la trés forte non-linéarité de
l'aérodynamique des missiles limite par trop leur domaine de validité. C'est grace d'une part aux progrés accomplis
dans le domaine des super-ordinateurs, et d'autre part au développement de la technique d’accélération de
convergence par marche en espace que les codes Euler sont devenus accessibles industriellement : ainsi la
procédure développée autour du code Euler FLU3C décrite au paragraphe 3 nous permet actuellement d'intervenir
rapidement a tous les stades du projet pour le domaine supersonique. En ce qui concerne le subsonique et le
transsonique, une procédure multidomaine répondant aux mémes exigences de performance est en phase finale de
développement. Elle fait I'objet du paragraphe 4.

2 CAO ET CALCUL AERODYNAMIQUE DES MISSILES

La géométrie des missiles s'est énormément compliquée depuis quelques années, principalement pour des
considérations de propulsion (entrées d'air sur ' ASMP ou I'ANS: figure 1) et de furtivité (lissage des formes). Dans le
méme temps, la précision des méthodes numériques de dynamique des fluides s'est suffisamment accrue pour
permettre la prise en compte de détails de géométrie ignorés jusqu'alors (gouttieres, capots...). Cette double
évolution a rendu indispensable I'emploi de systémes de CAO non seulement pour assurer la définition rigoureuse
de la géométrie, mais aussi pour faciliter son maillage pour des calculs numériques. Aussi, l'aéronuméricien se doit
aujourd'hui de posséder une compétence CAO.




En effet, la plupart des géométries que nous avons a calculer sont définies et modifiées par des spécialistes de
la CAO et sont destinées a étre exploitées dans les domaines les plus divers. Elles ne sont donc soumises & aucun
critére restrictif d'élaboration qui pourrait nous en faciliter le maillage. Par exemple, les différents éléments d'une
configuration sont le plus souvent juxtaposés sans souci de représentation des intersections, certaines surfaces de
définition peuvent se superposer en tout ou partie et méme étrc légerement disjointes. Cec sont autant
d'imperfections que nous devons en premier lieu éliminer. D'autre part, nous devons structurer la configuration a
mailler, c'est a dire construire les frontiéres des domaines de calcul, car en général elles ne coincident pas avec les
frontiéres des surfaces de d*finition géométrique. Enfin, nous avons trés souvent & modifier la configuration a traiter,
en particulier pour des séries de calculs paramétriques de positionnement et dimensionnement de surfaces
portantes ot envre pour 'estimation d'efficacités de gouvernes.

Teus ces éléments nous ont montré la nécessité de disposer d'un logiciel de géométrie performant, méme si
nous n’assurons pas la tiche de conception dans son intégralité. Plutét que de développer un logiciel aux
fonctionnalités CAO, nous avons préféré choisir un systéme déja existant et éprouvé et l'interfacer en fonction de
ros taches spécifiques de maniére a ne pas transformer l'aérodynamicien en spécialiste CAO malgré lui. Le logiciel
ICEM2 de Control Data Corporation sur station de travail IRIS de Silicon Graphics nous a paru répondre a cette
exigence : d'abord parce qu'il est extrémement convivial et facile d'emploi pour des utilisateurs qui ne sont
qu'occasionnels et qui en ont un emploi marginal, et ensuite parce qu'il intégre un langage de programmation
graphique tres puissant (Graphics Programming Language) permettant d’accéder directement la base de donndes
et d'utiliser la plupart des fonctionnalités mathématiques du systéme. L'écriture de modules en GPL nous a permis
d’automatiser le traitement des géométries les plus complexes que nous ayons eues a calculer,, comme nous le
verrons par la suite.

Parmi les nombreuses fonctionnalités et la souplesse d'emploi offertes par cette solution CAQ, il faut
souligner la possibilité de traiter les bases de données géométriques provenant des autres systemes par
l'intermédiaire de la base de données normalisée SET (Systéme d'Echange et de Transfert) via une interface de
traduction. De cette maniére, nous pouvons traiter les fichiers géométriques provenant de tous les logiciels de CAC
(Catia, Cadds, Aérolis...), pourvu qu'ils soient interfacés avec SET.

3 PROCEDURE POUR LA MARCHE EN ESPACE

Lorsque l'écoulement est supersonique dans une direction donnée, les équations d'Euler sont hyperboliques
dans cette direction et autorisent une résolution de proche en proche. Cette méthode dite de marche en espace
s'applique naturellement aux équations d’Euler stationnaires mais aussi aux équations d'Euler instationnaires. Le
maillage est alors généralement constitué d'une succession de coupes planes (2D) orthogonales a la direction de la
marche.

La procédure de maillage que nous avons développée s'articule en deux phases bien distinctes (voir
I'organigramme de la chaine de calcul en figure 2) :

- si la géomé+rie est analytique (par exemple un missile axisymétrique et cruciforme), elle est générée a l'aide du
module géométrique d'un logiciel interactif appelé PRECET, et maillée & l'aide du module de maillage du méme
logiciel qui est organisé autour d'un mailleur bidimensionnel elliptique dérivé de GRAPE (Référence 2);

- si la géométrie est une base de données CAO (par exemple un missile aérobie), elle est d'abord conditionnée au
sein du systéme de CAO par exécution d'une chaine de programmes GPL interactifs et batch. Le maillage est
ensuite réalisé a 'aide du module de maillage du logiciel PRECET.

3.1 Définition de la géométrie

Définition analytique

Le préprocesseur pour le calcul des missiles PRECET (PREprocesseur pour Calcul d'Engins Tactiques),
programme graphique interactif écrit en FORTRAN, posséde un module qui permet de construire trés rapidement
une géométrie simple (analytique) en combinant un certain nombre d'éléments (ogives, cylindres, surfaces
portantes avec ou sans épaisseur, rétreints...) définis de fagon paramétrique. Ceci s’applique trés facilement aux
missiles de forme classique tel que I' ASTER (Figure 6).

Définition via la CAO

Comme il a été dit précédemment, la configuration & mailler n'est pas définie sous CAO spécialement a notre
intention. Ainsi, méme si la géométrie est "propre”, on ne peut généralement pas utiliser telles quelles les surfaces
de définition car elles ne correspondent pas a celles que l'on souhaite mailler (Figures 3a et 3b). La plupart du temps
elles ne présentent pas de frontiére commune méme en les regroupant. La premiére étape consiste donc a définir
les surfaces & mailler avant méme de vouloir récupérer la définition géométrique. Or, dans le cadre de la marche en
espace ol il s'agit de mailler I'espace par une succession de plans perpendiculaires & J'axe de la configuration, les
surfaces 2 mailler présentent deux fronti¢res perpendiculaires & cet axe. Nous avons donc choisi de tirer profit de
cette caractéristique en modélisant la géométrie par une série de coupes dont certaines correspondent aux
frontidres des surfaces A mailler. Le probléme de structuration de la géométrie s'en trouve ainsi considérablement

simplifié.
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Le traitement de la géométrie se déroule comme suit :

- redéfinition de la configuration par une série de coupes perpendiculaires & son axe directeur : l'utilisateur
doit demander un nombre suffisant de coupes pour avoir une définition précise de la géométrie dans sa direction
longitudinale et doit spécifier les positions des coupes particuliéres correspondant aux frontiéres des surfaces a
mailler. Ces coupes limites sont choisies généralement pour marquer un changement de topologic de la
configuration ou pour autoriser de part et d'autre de celles-ci des maillages de types différents ou encore pour
marquer une discontinuité longitudinale. Une fois les plans de coupes définis, un programme calcule les
intersections avec les surfaces de définition (Figure 3¢); .

- "nettoyage” et préparation des coupes : I'utilisateur spécifie s'il veut traiter la configuration entiére, la moitié
ou encore le quart, et le programme modifie les entités en conséquence (suppression, coupure ou extension) cn
éliminant au passage toutes les entités parasites générées lors des coupes (en général des splines cubiques). Il
visualise par des points la trace sur les coupes des frontieres des surfaces de définition;

- choix des frontieres des surfaces a mailler : I'utilisateur doit d'abord désigner les coupes définissant les
frontieres transversales (limites des blocs), puis pour chacun des blocs ainsi définis désigner les frontieres
longitudinales (Figure 3d). Pour ce faire il lui suffit de sélectionner avec la souris de sa station de travail certains des
points visualisés lors de I'étape précédente. Le choix des frontieres longitudinales correspond le plus souvent a une
discontinuité qui doit étre absolument respectée lors du maillage final mais peut étre aussi une simple ligne de
maillage que I'utilisateur veut imposer pour, par exemple, pouvoir y effectuer un raffinement local. La qualité du
maillage final dépend en majeure partie de cette étape;

- enregistrement de la géométrie des surfaces & mailler : muni des informations que \utilisateur lui a
données précédemment, le programme ordonne automatiquement les entités de chacune des coupes, y répartit un
nombre de points fixé par un critére de densité donné et les stocke de mani2re ordonnée. On dispose ainsi a l'issue
de cette étape d'un fichier contenant les surfaces a mailler de la configuration sous la forme d'une grille structurée
de points de définition. Cette grille sera interpolée par splines cubiques lors du maillage (Figure 3e). En général,
linterpolation est suffisamment précise pour pouvoir se contenter des points paroi obtenus de cette facon.
Cependant, I'utilisateur dispose d'un programme lui permettant en dernier lieu de projeter automatiquement tous
les points paroi sur les surfaces géométriques initiales. Ainsi, la géométrie est rigoureusement respectée, méme si
elle a été maillée a partir d'une représentation approchée.

Dans le cas ou une coupe a donné lieu a plusieurs contours disjoints, l'utilisateur doit les relier les uns aux
autres de maniére a n'en obtenir qu'un seul, comme le réclame le mailleur. Ceci revient a créer des surfaces a
mailler artificielles dites de "transparence” qui seront traversées par I'écoulement lors du calcul comme si elles
n'existaient pas (Figure 4). Il faut procéder de méme lorsque la configuration présente une partie émoussée et donc
un écoulement localement subsonique : pour que le premier plan du domaine qui la contient soit supersonique, il est
nécessaire de l'avancer et pour ce faire de construire une surface artificielle qui reproduise la topologie de I'élément.

3.2 Génération du maillage

Préprocesseur

Le préprocesseur PRECET permet de définir un maillage tridimensionnel & partir de maillages
bidimensionnels par plans. La géométrie est définie analytiquement de fagon interne ou bien a partir d'un fichier de
points résultants de la démarche CAO décrite ci avant. L'utilisateur définit d'abord les abscisses limites des
domaines de calcul ainsi que le nombre et la répartition des plans de calcul. Ensuite, pour chaque domaine, il définit
le maillage transversal en fixant quelques parameétres (nombres de points radiaux et orthoradiaux...) qui seront
valables pour tout le domaine; il peut visualiser le maillage résultant dans n'importe quel plan de calcul. La frontidre
extérieure qui doit englober le choc frontal est fixée de maniére empirique en fonction de l'écoulement amont.
PRECET écrit des fichiers de type maillage, des fichiers de données pour les calculs FLU3C et un fichier de cartes de
contrdle que I'utilisateur n'a plus qu'a soumettre au super-ordinateur.

Mailleur

La méthode de génération de maillage repose sur la résolution des équations de Poisson. Les fonctions de
contrdle sont déterminées automatiquement, selon le schéma mis au point par Steger et Sorenson (Référence 2), par
spécification de I'espacement et de l'orientation des mailles au voisinage des ‘ronti¢res. Cette méthode a été choisie
pour sa capacité A traiter des domaines de formes variées tout en produisant des lignes de coordonnées assez lisses.
Les équations, une fois discrétisées, sont résolues par un algorithme SLOR appliqué d'abord sur une grille grossiére,
ou I'on ne prend qu'un point sur trois, puis sur la grille complete. De cette fagon le temps de calcul est divisé par 5, en
moyenne. Egalement dans le but d'améliorer les performances on a ajouté une option qui opére a partir d'une
solution calculée pour le plan précédent dans le cas ol les deux domaines sont géométriquement trés proches. Le
gain obtenu se situe entre 3 et 10.

En général, la configuration étudiée présente un plan vertical de symétrie, de sorte que le domaine & mailler
est topologiquement équivalent & un rectangle dont les quatre frontires sont: la frontidre intérieure constituée
d'une demi section du missile, la frontiere extérieure englobant la trace du choc et les traces du plan de symétrie 2
l'intrados et A 'extrados du missile. Pour les configurations qui n'admettent pas de plan de symétrie, le domaine est
topologiquement équivalent A une couronne et on choisit I'option "maillage en O".

Le programme a été adapté pour prendre en compte automatiquement les points anguleux (extrém ité de
voilure...) et les points confondus (apex d'une aile en fléche). Les données A fournir sont réduites au minimum :
nombre de points de maillage dans les deux directions, coordonnées (x,y) des nceuds sur les frontiéres intérieures et
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extérieures et indication de I'espacement désiré au voisinage des frontieres. Implicitement, le programme essaye de
générer des mailles orthogonales aux frontidres. Sur les frontidres latérales (plan de symétrie) on peut au choix
imposer les nceuds (conditions de Dirichlet) ou laisser les points "flotter” (conditions de Neumann) pour satisfaire
une condition d'orthogonalité.

On trouvera en figure 5 un exemple de maillage transversal pour le missile aérobie ASMP.

3.3 Calculs aérodynamiques : code FLU3C

FLU3C est un programme de résolution des équations d'Euler tridimensionnelles instationnaires sous
forme conservative qui résulte d'une coopération étroite entre 'ONERA et aerospatiale (Référence 3). Le schéma
de type volumes finis est explicite et donc soumis 4 un critere de CFL en temps. La formulation décentrée du calcul
des flux, suivant I'approche de Van Leer, assure & la méthode une grande robustesse. La précision d'ordre deux en
temps et en espace est assurée par l'utilisation d'un schéma prédicteur-correcteur de type MUSCL. Un limiteur de
pentes, qui agit uniquement dans les régions de fort gradients, prévient les oscillations en réduisant l'ordre de
précision spatiale prés des discontinuités. Pour la recherche de solutions stationnaires, deux méthodes
d'accélération de convergence sont utilisées :

- la méthode de pas de temps local; chaque point évolue avec sa propre échelle de temps jusqu'a convergence,

- la méthode de pseudo marche en espace; lorsque la composante de la vitesse suivant une direction privilégiée est
supersonique dans tout le domaine de calcul, on fait converger en temps, I'un aprés l'autre, chaque plan de calcul
orthogonal A cette direction en utilisant uniquement les variables situées & I'amont. Cette procédure minimise le
nombre d'itérations nécessaires ainsi que le volume d'entrées-sorties.

Le cout de cette méthode explicite restreint son utilisation dans un cadre industriel aux écoulements
supersoniques.: Le calcul d'un missile est en fait constitué de plusieurs calculs FLU3C (le dernier plan de calcul N
sert de plan initial pour le calcul du plan N+1). Une condition nécessaire est que les plans d'entrée et de sortie de
chaque calcul FLU3C soient supersoniques. Cependant, cela n'interdit pas la présence de poches subsoniques
comme c'est le cas dans les calculs de missiles avec jets latéraux (Référence 4). Le calcul d'une configuration
réaliste en écoulement supersonique avec un maillage comprenant 300 000 points est d'environ 20 mn CPU sur le
CRAY X-MP.

3.4 Exemples
Missile ASTER 30

La figure 6 montre un exemple de maillage pour 'anti-missiles ASTER 30. Le maillage surfacique comprend environ
14 000 nceuds pour une demi-configuration et 400 000 nceuds au total. La géométrie de ce missile classique est
définie de fagon analytique avec PRECET et tient compte du profil des voilures, ce qui est indispensable pour la
bonne prédiction des moments de charni¢re (Référence 5). La figure 6 montre également une répattition de
nombre de Mach pariétaux pour un nombre de Mach infini de 2,6 et une incidence de 10 degrés, obtenus avec le
code FLU3C. Les chocs et détentes liés aux surfaces portantes sont clairement visibles. Le programme FLU3C a ét¢
utilisé intensivement dans le cadre du projet de missile ASTER.

Missile ANS
L' ANS est un projet de missile aérobie étudié conjointement avec MBB pour succéder a la famille de missiles anti-
navires EXOCET. Il est équipé d'un stato-réacteur avec ¢ entrées d'air de révolution. Le maillage surfacique présenté
figure 7 comprend environ 16 000 nceuds pour une demi-configuration. La géométrie a été définie sous CAO. Le
résultat de calcul (coefficients de pression pariétaux) correspond & Mach 2 et 4 degrés d'incidence. Les entrées d'air
sont ouvertes et supposées en fonctionnement supercritique,

Navette HERMES sur lanceur ARIANE 5 °
La navette spatiale HERMES sur le lanceur ARIANE 5 est I'une des plus grosses configurations que nous ayons
traitées (Figure 8). Elle comprend environ 17 000 nceuds sur la paroi pour une demi-configuration et illustre bien
l'utilisation des surfaces transparentes (jonction des boosters et du corps central). Le nez de la navette est maililé
avee une singularité d'axe alors que Ie reste de la configuration est maillé par plan. La figure 8 présente des nombres
de Mach pariétaux & Mach 1,5 et 3 degrés d'incidence.

Avion de transport ATSF *
L'ATSF est un projet d'avion supersonique civil destiné 2 succéder 8 CONCORDE. La géométrie est plus simple que
dans les exemples précédents. Le maillage surfacique présenté figure 9 comprend 11 000 nceuds environ. La figure 9
donne également la répartition des nombres de Mach sur la paroi & Mach 2 et 4 degrés d'incidence.

4 PROCEDURE POUR LE MULTIDOMAINE

La procédure marche en espace présente certaines limitations, tant au niveau géométrie-maillage qu'au
niveau du calcul. Bien que des configurations trés diverses aient pu étre maillées et calculées aisément, elles restent
cependant limitées en complexité. De plus, quelle que soit leur topologie, toutes les configurations sont maillées en
"O-H", alors que certaines parties comme par exemple un bord d‘attaque arrondi nécessiteraient un maillage de
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"O-C". Cela peut nuire 2 la bonne représentation géométrique de 1'élément ou conduire & un nombre de points
de calcul trop élevé. En outre, certains contours ne peuvent pas étre maillés sans recourir a une simplification de la
géométrie. Enfin, la convergence d'un calcul transsonique sur un tel maillage n'est pas assurée, en particulier au
niveau des raccords entre sous-domaines (non correspondance des nceuds). C'est pour cette raison qu'il nous est
apparu nécessaire de développer une procédure tridimensionnelle générale. Nous avons choisi unc approche
multidomaine sans recouvrement avec possibilité de continuité des lignes de maillage entre domaines pour deux
raisons :

- le non recouvrement facilite la gestion du multidomaine,
- la continuité des lignes de maillage facilite le traitement conservatif des raccords.

Cette approche permet en outre, dans sa restriction surfacique, d'obtenir quasi-automatiquement un maillage
rigoureusement jointif pour une méthode de singularités.

4.1 Formes simples

Pour traiter les configurations de forme simple (axisymétrique, cruciforme), nous avons développé un
préprocesseur FORTRAN appelé PREMICE (PREprocesseur de Maillage Interactif pour Calcul d'Engins)
permettant la définition et le maillage interactifs de la géométrie. Celle-ci est définie A partir d'une bibliothéque de
formes simples (ogives, troncs de cones, ailes de différents types...). Le domaine de calcul est décomposé
automatiquement en blocs topologiques qui sont ensuite réunis en sous-domaines. Le maillage volumique est
effectué a l'aide du mailleur bidimensionnel présenté dans le paragraphe 3.2 par rotation de plans de maillage
autour de l'axe de la configuration. Les effets tridimensionnels (tuilage ou encore épaisseur des ailes) sont obtenus
par déformation des plans de maillage. Un exemple de maillage multidomaine du missile ASTER ¢st produit en
figure 10.

4.2 Formes définies par CAO

Définition de la géométrie

La démarche adoptée ici est sensiblement la méme que pour la marche en espace en ce sens qu'elle s‘articule
en deux parties distinctes, I'une relative au traitement de la géométrie est effectuée au sein de ICEM, l'autre
concernant le maillage est effectuée hors de ICEM. Cependant, le traitement de la géométrie requiert cette fois-ci
une connaissance plus poussée du systtme de CAO, puisque l'aérodynamicien doit construire lui-méme les
fronti¢res des sous-domaines.

La premiére tiche & accomplir est la décomposition du domaine physique en un certain nombre de sous-
domaines faciles & mailler; la plupart des auteurs préconise d'effectuer une partition du domaine en blocs
topologiques de type "éléments finis" (Références 6 et 7) : l'intersection de deux blocs ne doit étre constituée que
d'un sommet, d'une aréte compléte ou d'une face compléte. Les blocs obtenus peuvent étre facilement maillés de
fagon structurée, puis réunis pour former les sous-domaines de calcul. Cette méthode permet une gestion logicielle
trés simple de la connectique, mais est trés contraignante car elle conduit & un grand nombre de blocs dés que le
domaine & mailler devient complexe (souvent plus d'une centaine de blocs). L'approche que nous avons choisie est
plus simple pour l'utilisateur : le domaine physique est directement décomposé en sous-domaines de calcul (de
'ordre d'une dizaine) qui sont choisis en fonction de la topologie rencontrée. Chacune des faces des sous-domaines
est découpée en un ensemble de fenétres correspondant en général au type de condition limite & y appliquer lors du
calcul, ceci de telle maniére que les sous-domaines de calcul communiquent entre eux par une fenétre, un bord de
fenétre ou un coin de fenétre. L'intérét de cette approche vient du fait que la structure d'une face de sous-domaine
n‘a pas besoin d'étre reproduite sur sa face opposée, ce qui évite une inflation de blocs. La configuration reste ainsi
trés lisible au niveau géométrique comme au niveau connectique (Figures 11a et 11b).

La décomposition du domaine en sous-domaines de calcul et des faces en fenétres est faite par I'utilisateur
sous CAO et requiert une certaine connaissance des fonctionnalités du systéme. L'emploi d'un systéme de CAO
s'avere ici indispensable par comparaison a I'écriture d'un logiciel spécifique qui n’aurait pu en aucun cas offrir la
méme gamme de fonctionnalités.

Une fois effectuée la construction géométrique des arétes des fenétres, l'utilisateur est guidé dans sa
démarche par un programme GPL auquel il doit donner les renseignements nécessaires pour que celui-ci retrouve
et enregistre la connectique des sous-domaines et leur gécmétrie. Le dérculement des opérations est alors le
suivant :

- désignation par l'utilisateur de toutes les fenétres par sélection des entités géométriques les constituant (Figure
12a). Le programme visualise les fenétres ainsi définies (Figure 12b);

- sur la modélisation par fenétres, désignation des faces par sélection de fenétres. Le programme représente
graphiquement les faces ainsi définies (Figure 12¢);

- sur la modélisation par faces, désignation des sous-domaines par sélection de faces;

- enregistrement d'un fichier de connectique : la connectique est assurée par l'intermédiaire des fenétres : a chaque
entité géométrique entrant dans la définition d'une fenétre est associ¢ un "label” unique. La comparaison de ces
“labels” permet de savoir si deux fenétres sont adjacentes ou pas, et donc de structurer les faces; »

- enregistrement d'un fichier géométrique : la géométrie des fenétres est enregistrée sous forme de séries de points
répartis sur les entités constituant leurs arétes. En outre, pour chacune des fenétres paroi, une grille structurée de
points intérieurs est générée A partir des surfaces de définition et leur répartition évolue en fonction de celle des

arétes correspondantes (Figure 13),




Génération du maillage

Au sein d'un domaine, il faut assurer la correspondance des mailles d'une fenétre a l'autre pour obtenir un
maillage structuré. De méme, on peut vouloir assurer la continuité des mailles d'un domaine 2 l'autre. Pour cela, il
suffit de d'assurer pour chaque fenétre l'égalité des nombres de points sur deux arétes opposées. On obtient ainsi un
systéme d'équations linéaires dont la résolution par une méthode de pivot détermine le maillage des arétes a partir
de la donnée d'une densité de points et/ou d'un certain nombre de ces inconnues (le méme procédé est utilisé sous
CAO pour fixer les nombres de points du fichier géométrique). Le maillage des faces est obtenu par la réunion des
maillages des fenétres. Les points de maillage des fenétres de paroi sont interpolés a I'aide d'une représentation par
carreaux de Coons bicubiques et les autres fenétres sont maillées par interpolations transfinies. Le maillage par
fenétre permet de bien respecter les discontinuités de pentes de la paroi qui sont généralement prises comme
limites de fenétres. Enfin, les domaines sont maillés par interpolations transfinies & partir des faces. Un exemple de
maillage est présenté sur les figures 14 et 15 A partir de la décomposition multidomaine présentée sur les figures 11a
et 11b.

Comme nous I'avons précisé en introduction, cette procédure est encore en développement. Ainsi, un certain
nombre de fonctionnalités manquent pour I'instant :
- une fonction de répartition de points est associée a chaque entité géométrique pour permettre les raffinements de
maillage, mais cette fonctionnalité n'est pas encore implantée,
- le processeur de maillage est encore rudimentaire,
- nous ne disposons pour l'instant d'aucune technique d'optimisation/adaptation de maillage : aussi nous nous
orientons vers l'implantation d'un optimiseur basé sur la minimisation de la fonctionnelle présentée récemment par
O. P. Jacquotte (Référence 8). )

Nous envisageons également d'étudier une procédure d'aide A la décomposition en blocs de la géométrie
pour la génération des sous-domaines.

4.3 Exemples

Pour illustrer la procédure multidomaine, deux exemples ont été évoqués au cours du chapitre précédent. Ils
sont détaillés dans ce paragraphe:

- missile classique : la figure 10 présente le maillage multidomaine du missile ASTER ailes minces. Trois sous-
domaines de calcul définissent le domaine total : un A 'extrados, un a l'intrados et un entre les surfaces portantes. Ils
ont été générés avec PREMICE par rotation autour de l'axe de symétrie du plan de maillage visualisé sur la figure
(dimensions : 127x34 ). Le maillage total comprend 150 000 nceuds;

- missile aérobie: la figure 11a présente la décomposition multidomaine d'un missile générique aérobie
semblable a celui de la figure 3a. Le domaine de calcul a été découpé en 15 sous-domaines. La figure 11b donne une
vue éclatée des 9 sous-domaines intérieurs dont 6 seulement possédent une fenétre de type paroi. Le maillage du
sous-domaine n°® 4 (extrados du fuselage arriére, dérive et empennage) est visualisé en figure 14 (dimensions :
17x21x69). 11 s'agit 1 d'un maillage brut n'ayant encore fait I'objet d'aucune optimisation et généré directement a
partir des données issues de la CAO. Le maillage surfacique (15000 noeuds) et quelques plans de maillage sont
présentés en figure 15.

5 CONCLUSION

Deux procédures de traitement de géométries et de maillage pour les calculs aérodynamiques ont été
décrites. La premiére est orientée vers les calculs Euler avec une technique de marche en espace et privilégie une
direction particuliere pour définir la géométrie et mailler l'espace de calcul. Elle est trés largement utilisée a
aerospatiale Division Engins Tactiques dans un contexte industriel et son application & des géométries aussi
diverses que celles des missiles aérobies ASMP et ANS, de la navette spatiale HERMES et de I'avion de transport
supersonique ATSF prouve l'intérét de cette approche. La seconde est une généralisation de la premiére avec une
orientation calculs multidomaines. Les deux procédures sont intimement liées A I'utilisation par I'aéronuméricien
d'un systtme CAO interactif, auquel nous avons ajouté des modules, pour définir les domaines de calcul et
récupérer la géométrie sous une forme qui permette de générer un maillage de maniére simple et interactive. Le
temps nécessaire pour traiter une géométrie complexe et lancer le premier calcul est de un a deux jours pour la
premiére procédure. Le temps prévu pour la seconde, qui est en cours d'achévement, est d'environ une semaine.
Ceci est rendu possible par la minimisation du nombre de structures a gérer par l'utilisateur et 'automatisation des
principales taches.

: Calculs effectués par M. Mortel de la Division Spatiale dans le cadre du programme ARIANE 5 a la Division
Engins Tactiques avec la procédure décrite ici.
** : Calculs effectués par M. Carlier de la Division Avions a la Division Engins Tactiques avec la procédure décrite ici.
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ASMP : Missile Air-Sol Moyenne Portée
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ANS : Missile Anti-Navire Supersonique

Fig. 1 : Missiles aérobies aerospatiale
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Fig. 2 : Chaine de calcul pour la procédure de marche en espace
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Fig. 3a : Missile générique aérobie

Fig. 3b : Géométrie surfacique CAO de la partie arridre
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Maillage et résultat de calcul (nombre Mach) surfaciques
- Missile ASTER 30 (Mach 2,6 - incidence 10 °) -
Fig. 6

...‘ l-
arospois

aerospatiale

A DIVISION ENGINS TACTIQUES

Maillage et résultat de caicul (coetticient de pression) surfaciques
- Missile ANS (Mach 2 -incidence 4 °) -
Fig. 7
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Maillage et résultat de calcul (nombre Mach) surfaciques
- Ariane 5 + Navette Hermes (Mach 1,5 - incidence 3 °) -
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} OS e Fig. 12a : entités géométriques

entités géométriques et sous-faces

Fig. 12¢ : sous-faces et faces

Fig. 13 : entités géométriques et points de définition surfacique
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MESH GENERATION FOR FLOW COMPUTATION IN TURBOMACHINE
by
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ABSTRACT

This paper deals with building grids for flow computation in turbomachine applications. H,I,C, and
0 types are discussed for 2D or 30, inviscid or viscous flow cases. The given examples concern 3D Euler
application on a fan with part-span damper and splitter, 20 Navier-Stokes on turbine and compressor tran-
sonic cascades and 30 Navier-Stokes on a transonic fan

1 - INTRODUCTION

In recent years air flow computation in turbomachines have permitted more efficient fan and turbi-
ne designs [1]. In addition these computations reduce the number of time and cost consuming tests. All
modern numerical codes use a grid as a space discretisation.

Grid generation is a primary part of obtaining numerical solutions to the two or three-dimensional
inviscid or viscous flow inside turbomachinery. Computation of three-dimensional viscous flow inside
cascade of airfoils with arbitrary endwalls or complex geometries such as dampers requires many addi-
tional constraints for grid generation. For the current study, only structured grids without any solu-
tion adaptation will be discussed. Both unstructured grids and grid adaptation provide additional ways
to reduce overall grid size for a given physical problem, their application to three-dimensional vis-
cous flows in a turbomachinery needs further development.

2 - PARTICULARITIES OF TURBOMACHINE MESH

Most of flow computation methods in turbomachine use cylindrical coordinates (R, radial coordi-
nate ; © , tangential coordinate ; Z axial coordinate). Then the mesh is drawn on an axisymetric
sheet for the two-dimensional case ( O ; m, meridional coordinate}. For the classical three-dimen-
sional case, mesh is build by stacking several two-dimensional meshes. For complex geometries (such as
non axisymetric hub, non axisymetric dampers, etc.) more efficient mesh generators are needed. Rotors
or stators have many airfoils. In order to save computation time and simplify the topology the mesh
is limited to one airfoil channel and a periodicity condition is used in ©—direction (fig.1). Ups-
tream and downstream flows (Z - direction) are assumed to have axisymetric field for some aerodynamic
parameters but with non-zero radial and axial gradients. This is why upstream and downstream bounda-
ries are axisymetric surfaces and very often they are a plane normal to the turbomachine rotation axis.
This choice makes easier the treatment of periodicity conditions. Conditions on hub and tip surfaces
are classical wall conditions. Last characteristics of turbomachine airfoils are the high level of
camber, specially for turbine blades, or the high stagger, specially for transonic fans,

The suitable mesh qualities for flow computtition in turbomachine arc .
- good regularity

- good orthogonality

- easy introduction of periodicity condition

3 - DISCUSSION ABOUT MESH TYPES

An H-grid (fig.2) has been used very widely for inviscid and viscous flow computations. Although
H-grid has very good far field properties and is easy to apply to periodicity condition, the grid
tends to skew significantly when applied to transonic fans and highly cambered turbine blades. With
the recent improvement in grid generation technique (either elliptic or algebraic), most leading edge
and trailing edge problems can he avoided. However, the overall skewness of the grid remains still too
high for three-dimensional viscous flow computation. For the three-dimensional tuler equations, using
a good stability solver such as Lax-Wendroff-Ni finite volumes scheme, H-grid can be performed on
transonic fans with splitter and dampers (see chapter 4).

In viscous flow computation, near the endwall region, a good quality grid is necessary in the mid-
dle of passage as well as near the blade. A single O-grid or C-grid (fig.2) provides good grid reso-
lution around the blade and in the wake (C-grid). But the single O-griu ur C-grid becomes very skewed
at  the inflow and periodic boundaries due to the constraint of spacial periodicity
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An [-grid which can be treated as a generalized H-grid, provides reasonably good grid resolution
near the blade as well as the far field. With the I-grid spatial periodicity of the grid at the perio-
dicity surface is no more forced and the physical periodicity condition is handled inside the code by
higher order interpolation of variables, good orthogonality of the grid can be maintained near the
blade surface and at periodic surfaces with most elliptic or algebraic grid generation. Although a
single I-grid can be used efficiently for most regular blade row description, significant portion of
grids can be saved by wrapping an O-grid or C-grid inside the I-grid when large number of grids are
required near the blade for boundary layer resolution.

For two-dimensional flow calculation, different physical assuptions can be alsc applied on the
domain surrouding the profile, a full Reynolds-averaged Navier-Stokes eguation can be integrated while
inviscid assumption can be made on the remaining domain for economy of solution. However, these as-
sumptions cannot be applied for three-dimensional flow calculation because of viscous flow effects of
endwalls. In chapter 5 we provide various examples of using combined I, C, O-grids and subdomains
technique

EXAMPLES OF 3D EULER COMPUTATIONS

The 3D Euler code here discussed has been firstly developped for single smooth compressor blades
{2, 3], then part span damper was introduced [4] and finally we added downstream splitter for fan ap-
plications.

The sheets supporting channel grids are axisymetric stream tubes provided by a through flow calcu-
lation (fig.3). A simple algebric H-grid is used with a regular tangential distribution of points. The
periodic boundaries start at the leading edge (or trailing edge) with the airfoil meaniine slope and
become meridional Tines in the far field. In the axial direction particular lines are fitted with the
meridional projection of leading and trailing edge curves. In upstream and downstream region grids
lines are spaced according constant rate increase instead of egual spacing which is used inside the
blade row.

The use of compatibility equations to impose boundaries conditions [2] permits arbitrary distri-
bution of the points on the periodic boundaries and tangential overlaping is not needed. Lrid ortho-
gonalisation, using Poisson's equation, has been tested but in many case it's not necessary.

To compute velocity field around fan blade including part span damper and downstream splitter ef-
fects we use multi-domain technique (fig.4). One domain is extending from the hub to the streamline
of the splitter lower surface, the second from the streamline of the splitter upper surface to the
part-span damper streamline and the third from the part-span damper streamline to the external casing.
Grid are generated on each domain by a technique similar to that used for smooth blades. Figure 5
shows an example of such kind of mesh, the total number of mesh points is 22000. For both cases
(blade only and blade + part-span + splitter), figures 6 and 7 gives the isomach lines on the suction
surface view and on a blade-to-blade view. A shock appears clearly on the damper and the splitter ef-
fect can be notted on the lower part of the blade

EXAMPLES OF 2D AND 3D NAVIER-STOKES COMPUTATIONS

In figure 8 an 1-0 type grid is shown for a transonic turbine rotor blade. Detailed grid near the
trailing edge is shown in Figure 9. Various sizes of 0-grid can be wrapped around the airfoil inside
the I-grid for the resolution of boundary layer growth. As shown in Figure 9, good orthogonality of
grid is obtained near the trailing edge where a trailing edge shock system is anticipated. The compu-
ted static pressure contours are shown in Figure 10 .and detailed trailing edge region is given in Figu-
re 11, The results in Figure 10 and 11 are based on a grid size of 7000 nodes. The accuracy of the so-
lutions are good for the given grid size. Detailed velocity near the trailing edge is shown in Figure
12. The numerical solution was obtained with a upwind relaxation method The laminar-to-turbulent
transition and turbulence is modeled with a two-equation turbulence model with a low Reynolds number
modification. The details of the numerical scheme is given in [5].

The next examples are a solution of the two-dimensional Reynolds-averaged Navier-Stokes equations
completed by the mixing length turbulence model. Numerical scheme is the explicit Lax-Wendroff-Ni fi-
nite volumes technique. More details about applications to cascade airfoils are in Ref.[6]. Multigrid
steps an local time step are used in order to reduce computation time, We use a multi-domain technique
and compatibilities equations are employed on all boundaries.

The first application uses navier-Stokes solver on two I-grids put on both profile sides (Fig.13).
An Euler solver is applied on the remaining I-grid in the upstream domain. The boundary slope between
the two Navier-Stokes domain is continuous with meanline profile slope and upstream and downstream
domain shape is the classical one adopted for H or l-type grids. Normaly to the profile,meshes are
spaced according to a geometrical progression. This permit to have a mesh size near the blade consis-
tent with the thickness of the viscous wall layer without unacceptable increase of the number of nodes
On the far wake wider meshes are allowed. The axial spacing is similar to those used in 3D Euler ap-
plication. This kind of grid does not take in account the actual leading edge shape and bow-shock can-
not appear. However most of the flow field is accurately computed and a solution is given in fig.14
:or a grid having 18963 nodes. The lambda-shape on the shock/boundary layer interaction zone is clear-
y shown.

The second application uses C-grid (Navier-Stokes solver) around the profile and a I-grid for the
remaining upstream region {Euler solver). In fact the C-grid is built by adding two I-grids at a small
C-region around the leading edge. Then a orthogoralisalion method with relaxation is applied to this
domain and the nodes are renumbered. Fig.15 shows an example of such grid with 20507 nodes. On the
boundary between C and | domain the nodes are the same for both grids The numerical solution is
given on Fig.16 and one can see on a zoom the accurate computation of the oblique shock becoming bow-
shock near the leading edge. The remaining flow field is nearly the same as that computed with [-grid.
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The last example is obtained with an -0 type grid (Fig.17) for a modern transonic fan [7]. The
grid shows good orthogonality near the leading edge at the blade tip where a leading edge shock system
is expected. The computed endwall static pressure contours are compared with measured data and invis-
cid Euler soluticn in Figure 18.

CONCLUSIONS

Several structured mesh-types are used in turbomachine applications. o

For the current 3D Euler codes H or I types are widely employed. They are often sufficient for
accurate computation and they have good qualities in the upstream and downstream zones.

For 20 or 3D Navier-Stokes codes, C or Q types permit a good representation of the complex tran-
sonic viscous flow at the leading edge or at the trailing edge and in the wake. So, several types of

grids are used together in order to combine their qualities. [-0 or I-C grids have been tested and the
results are presented in this paper.
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ABSTRACT

A numerical method for solving the three-dimensional unsteady Euler equations on dynamic multiblocked
erids about complex configurations in transonic flow is presented. Two configurations are considered. The first
s a wing- pyvlon-store configuration with the store in the captive position, and then vertically launched from the
wing-pylon The second is a counter-rotating unducted propfan. The numerical results are validated by com-
parisons with available experimental data.

1. INTRODUCTION

Computational fluid dynamies (CFD) has matured to the point that steady-state numerical solutions have
been obtained for the fiow about complex three-dimensional configurations. These steady-state solutions are
<omputationally expensive, but unsteady solutions for complex cornfigurations are so mach more expensive that
they become tatally impractical for most of the technical community. Part of the reason for the enormous
expense of unsteady solutions is that the permissible time step is usually restricted by the numerical algorithm
and not the physies of the flow considered. Small computational cells, even if there are relatively few in number
suvh asnear a solid surface. can greatly increase the number of time steps required to complete the motion. By
removing or reducing the time step restriction in the numerical algorithm, far fewer time steps can be used while
sl capturing the essential physics of the flow. The purpose of this paper is to address steady and. in particular,
unsteads soluttons of the Buler equations for relatively complex three-dimensional configurations. The numeri-
cal alzorithms will be discussed with regard to stabihity and the corresponding atlowable time steps. A method
used o penerate three-dimensional blocked grids, such as used in this work, is described in another paper at this
Specialinty Mecting - Consequently. other than techniques used to manipulate blacked grids that move relative to
one another. the emphasis nere will be on the method used to obtain steady and unsteady flow solutions and not
on erid veneranon Selected numerical results will Be presented and compared with eaperimental data. where
avariable tor the followine configurations i transonie flow: (1) wing-pylon-store and (2) counter-rotating
undictest proptan

2. FQUATION FORMULATION AND NUMERICATL ALGORITHM
Conservative Model

Fhe ultimate goal in computational fluids 15 to minmuze the approximations to the most fundamental madel-
e cquations. presumabiv o salvage most of the physics, while attaining modest execution imes on the available
ciupment Traditionathy the analysis of rotating machinery begins with the casting of the modeling cquatiens in
awvhndneal reference frame inan effort to benefit from the time-asymptotic steady - state solutions which exist
tor particular ontigurgtions  One of the goals here, however, is to produce field simulations of general complex
retsting configurations, induding those contaiming interacting components  Herce, the solutions sought are ot
aonune unsteady flowhields In the interest of compuatatuonal brevity, an assumption of a nonconducting, invis-
<ilopertect gas with no body forces will be made [t s anticipated that viscous flowfield simulations can be
produced with onty munor modifications to the procedures outhined herein. Efforts toward this end are presenth
underwayIn this hight the uncteady three -dimenaonal Fuler equations in conservatine differential form are
rransformed trom a Cartesy oo reference frame to the time -dependent body- fitted cursihinear reference frame!
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with the contravariant velocities

U=Eu+Ev+Ew+,
Vi=na+ny+nwen
W=Cu+ly+lw+l,
The Jacobian of the inverse transformation, i.e. 3(x,y,2)/3(§, 7, ), is given by
I = xp(ynze - 2nye) - Ye(Rnzt - 29X2) + 26{anyt - yro)

and the metric quantities are

£ =T Onzt - 2ny0) &: = T (xgyg - yoxo)
&y = J (apxg - xp2t) & = - X - yiky - 2k
ne = J7 (29t - yeze) s = I (xgy - yexe)
ny = J ' (xezg - 7x) M= = Xellx = Yelly — ZeM:
Ee = T (Vezy - 269y) L = T (xgyg - yexn)
&y = T (xg2g -~ 29%¢) b= - xee - by - 2L,

The approach taken here is based on the integration of the Euler equations in conservation law form over
discrete contiguous volumes in computational space. This formulation, commonly referred to as a finite volume
method, yields the following discretized integral expression for a three-dimensional computational space with

finite volume (cell) centers denoted i,j.k:
Q OF 4G &H (3)

It Af A77+AC
or with Af=An=Al=1

90 L BF 860
at
where 8,() = (')'01/2 -()ean
In this expression the components of the dependent variable vectors, Q, ; ;. represent average values for the
1,j.k cell. It is therefore evident that some method must be devised to accurately represent the vector-valued flux
functions F(Q), G(Q), and H(Q) on the bounding surfaces (faces) of the cell. One of the methods used in this
study is based on a one-dimensional analysis of the Riemann problem local to each interface, established by the
discontinuous nature of the dependent variable vector Q within the spirit of a finite volume field. To facilitate the
introduction of the method used in this study. a digression to a one-dimensional Cartesian space is in order.

First Order Flux Formula

The analogous (to Eq. (3)) discretized integral form of the Euler equations written for one spatial dimension
in Cartesian space appears as



9 O _ 4
at+Ax~o @

Godunov? proposed a procedure to obtain a global solution to Eg. (4) by solving the set of Riemann problems
presented by the interface discontinuities. The Riemann problem local 10 each interface is costly to solve exactly,
due to the necessary iteration. Many investigators”*-%:¢ have made attempts to lessen this computational expense
by approximating the solution of the Riemann problem. In essence these methods yield an approximate solution
to the exact equation, and hence are dubbed ‘approximate Riemann solvers’.

In {7}, Philip Roe suggests an alternate procedural choice. Roe proposed to obtain the exact solution to an
approximate equation. The cleverness of Roe is evidenced by his choice of approximate equation. Consider the
quasilinear form of Eq. (4)’s parent conservation law,

aq - 89
E‘*’A(qu qR)B;': 0 (5)

where A(g 1+9x) is a constant matrix representative of local infetface conditions. Matrix 4 is chosen to have the
following specific list of properties, which Roe "christened Property U (since it is intended to ensure uniform
validity across discontinuities)”:

1. It constitutes a linear mapping from the vector space q to the vector space f.
2. As g, =g, 9. AlgL,gr) — Alg), where A= %
3. For any qu.qr, A(9..95) * (9g-9,) =fr-fi-

4. The eigenvectors of X are linearly independent.
Restricting A to the satisfaction of Property U results in a special, unique® averaging process for the dependent

variables from which A4 is constructed. Referred to as "Roe averaged”, the dependent variables are given by the
following expressions:

0=(0,00" (6a)
1/2 1/2
Qp UL+ Qg Ur
ST (6)
Or *+0x
1/2 1/2
I T f’/;,t@%zi& (6¢)
O +0r
where the total enthalpy, H, is defined
H=tte v p) {6d)
e

The interface flux differcnce can be expressed as
df - fo-f=A" (4g-9,) = A dg M
where 4 is constructed with "Roe averaged” variables. Armed with the eigensystem of A and the knowledge that

the interface differential dg is proportional to the right eigenvectors of A (as shown in {9]). the interface flux
difference can be written refative 10 the right eigenvector basis of A as

(8)
df = Z AaqVr = STa A0 4 ST adV'rY = dft e df

Physically, the flux difference is shown to be the compasition of a collection of waves. In Eq. (8), #¥)is a right

eigenvector af A, s the sirength of the /* wave (the jump in the characteristic variable across ). s an
eigenvalue of A (the speed of the j/* wave): and ) "and > denote summation over the negative and positive

wave speeds. respectively.
The interface flux can be computed from either of the following formulae:

fm/z’fl. * Z aAv'r? (9a)
forp=fa = 2 aqurt (9b)

S = % Ve+fu - Za,uw‘n,nl (9¢)

‘s
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This first-order interface flux formula, commonly referred to as flux difference splitting (FDS), which was
developed for the one-dimensional equations can be used in a multidimensional space provided the assumption is
made that all waves travel normal to their respective interfaces. Also, the special averaging process follows
directly for each component of the velocity vector in multidimensional space.

Higher Order (TVD) Flux Formulas
In order 1o provide solutions of higher spatial accuracy, a family of schemes'’ can be represented by the

addition of a corrective flux to the first-order interface flux, Eq. (9), produced in the preceding analysis. Hence
the higher order interface flux is given by:

O R A A REC N LA 9 (10)

The principal part of the truncation error for this flux formula is found to be

-1/3 M
e = - L= (ay P 1y

The details (common names, order of accuracy, etc.) of the members of this family can be found in {11,12]. Two
members, third-order (¢ = 1/3) and fully upwind second-order (¢ = - 1) were, by choice, exclusively used
(examined) in this work.

The discussion of a higher order scheme inherently involves a method used to control spurious oscillations,
i.e. dispersive errors. The method, actually methods, used in this work concern limiting components of the
interface flux to produce total variation diminishing (TVD) schemes, i.e. nonoscillatory schemes. The following
formulas have theoretical development as TVD schemes only in scalar nonlinear equations and systems of linear
equations in one-dimension. The use of "limiters” yields the following expressions for the corrective flux terms:

i)
dfi = 2L, - 1)’.-(11/2
dﬁ—l/z = Z‘ L1, l)ri(?l/2
(12)
dfiay = Z-LJ(1'3)rg»)l/2

dfispe = Z-L,(l 1)’,'({)1/2

One of the limiters studied, referred to as a minmod limiter, is implemented by way of the following definition
of the L function

: ) )
Lim,n) = mmmod(aﬂm/z,ﬁoﬂn/z) (13)
with 0¥, a parameter proportional to the change in dependent variables across nearby interfaces, detined by
0 _ 0 _ g )
o,.,iz_’—'lv;—;a/_.ol’l_'llf-;-lroo’?dqnt% (19)

where £V is a left eigenvector of - The minmod limiter is then defined

minmed|x, y| = sign(x) max {0, min{|x}.y sign(x)]} {15a)

and the parameter £ is a "compression” parameter given by

-9
L (15b)

In this work the maximum £ was used in all cases.
Another limiter studied, this one credited to Roe'?, is called Superbee. It is implemented as follows
L(m,n) = cmplim(aff:,,/z. o,(f:/:) (16)
where
cmplim[x,y] = sign(x) max {0. min{|x|. By sign(x)]. min[Blx], y sign(x)]} (17
and another compression parameter f. differing from that defined by Eq (15b), is taken here to be two.
Approximately Factored Implicit Scheme

In light of the fact that Eq. (3) has yet to be integrated in time, no mention has been made as to what time level
the numerical interface fluxes appearing on the RHS are evaluated. The underlying theory of the approximate
Riemann solver presented thus far is based on explicit concepts which result in an unattractive, rather stringent
time-step restriction. Equation (3) can be written in a linearized discrete-integral delta form to cover a broad
class of explicit and implicit schemes'*:




QA‘! n . _ Az n '/’ -1 18
[l+l+w M" |AQ" = ypen R +—1+wAQ (18)

Some of the implicit time differencing schemes represented are (6=1, ¥ =1/2)three point backward,
(#=1, ¥ =0) backward Euler, and (#=1/2, y =0) trapezoidal.

Formally, all terms appearing in this equation should result from a single flux formulation. Superior results
have been obtained, though, by evaluating the residual term R” with flux difference split theory, and the left-
hand-side (LHS) operator with flux vector split (FVS) theory, see [15 and 16]. The rationale behind this is
presently attributed to the more dissipative nature of the FVS theory. The following expressions, Eq. (19 and 20),
complete Eq. (18) for this hybrid scheme

M~ = 8A* + 8AT + OBt + OB- + 8Ct + 6,Cn (19)
with
v - &y
A= %%)"
B - Go)

where F*, F7, G, ... result from Steger-Warming flux vector split theory with the elements of A*, A", B*, ..
being given in [17), also

R" = d,‘F" + (SjG" + (5kH" (20)
where, F, G. and H result from the flux difference split theory discussed herein.

The LHS of Eq. (18) tends to be cumbersome and difficult to invert, not to mention very costly. In light of this,
the LHS was approximately factored into the product of two operators, each of which involve the passage of
selected information. Here a forward and backward operator are used (block LU factorization), yielding the
following two step (LU) scheme:

OAT N GAT - no_ Ar n l/’ a-1

[/+1+wM.][n“wM.]AQ = ——HwR+~—IWAQ 21)
or

fAr + t+ + C - - Ar n __EJ___ n-1
['+1+w(d‘A' + 8Bt + 6,C*)AQ" = vy R + Tow AQ (22a)
‘“TOA:/;(O'A_' + 8B + 8,C7)AQ" = AQ" (22b)

+

Q"' = Q"+ AQ" (22¢)

Although factoring has been shown to degrade the unconditional stability of Eq. (18),"" it has been our
experience that the (LU) scheme apparently retains this touted attribute. Equations (22) are in the fina! form of
the mathematical model developed for the time-accurate analysis.

Boundary Conditions

Since the approximate Riemann solver is a characteristic based scheme, the characteristic variable boundary
conditions developed in [1] relative to a three-dimensional time-dependent body-fitted reference frame for
inflow, outflow, and impermeable boundaries are employed where applicable. As in [QIJ phantom cells are
utilized to implement these boundary conditions. The changes in dependent variables (AQ"),and AQ ,are set to
zero in the phantom cells for inflow, outflow, and impermeable boundaries.

3. BLOCKED GRIDS

As mentioned in the introduction, the scope of this work can encompass extremely complex flowfields as well
as complex geometries. At times, in order to adequately resolve these flowfields, an enormous number of cells
are required. With the present formulation, approximately 190 vital pieces of information must be known for
each cell (up to 115 simultaneously). Bearing this in mind, it is easy to see how the vast majority of present-da
supercomputers are unable to support such calculations due to insufficient internal (primary) memory. In addi-
tion, the mesh (grid) for most complex geometries is more easily generated in pieces, where each piece generally
conforms to a single component of the overall configuration. These are but a couple of the reasons which can be
cited for the segmenting of one virtually insurmountable flow environment into several, smaller, more manage-
able, intercommunicating flow environments.
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This segmenting is commonly referred to as composite gridding the field, of which there exist three common
methods: overlaid, patched, and blocked. Examples include: the chimera (overlaid) scheme of Benek, Buning,
and Steger'®, the zonal (patched) scheme of Rai® , and the dynamic block scheme of Belk!”. The approach taken
here, a dynamic blocked grid method, is similar to that taken by Belk. In [17], Belk investigated many of the
dilemmas posed when attempting time-accurate simulations of flowfields while using a blocked grid structure of
a dynamic (moving) mesh. His emphasis was on the formidable task of developing a computer algorithm to
handle a completely arbitrary arrangement of generaily dissimilar blocks. Belk’s general approach was used here
for the wing-pylon-store computations. Unfortunately, this general approach adds to the complexity of the code.

For the case of turbomachinery, the nature of the geometry suggests possible block arrangement and charac-
teristic restrictions which can yield significantly simpler algorithm logic. The block structure proposed here for
the specific case of dynamic cylindrical geometries (generally, bladed or finned bodies of revolution) will be
referred to as ilari i . For details of the block arrangement for the special case of
turbomachinery, see [21] and [22]. For a discussion of the general case, see [17] and [23].

4. RESULTS

Numerical results are presented for store aerodynamics involving the mutually interfering transonic flow
about a wing-pylon-store configuration, in both the captive and launch positions. Also, results are presented for
rotating machinery involving a counter-rotating unducted propfan propulsion system.

Wing- =

Steady state multiblock solutions are demonstrated by computing the flow about the wing-pylon-store con-
figuration with the store in the captive position. Unsteady dynamic multiblock sslutions are demonstrated by
computing the flow about the complete multibody configuration as the store moves away from the parent wing=
pylon configuration through a vertical {aunch trajectory. Unfortunately, no experimental data is available for
comparison with the unsteady moving store solution; however, experimental data is available for the captive
position and is compared with the numerical solutions.

The wing-pylon-store configuration considered was the same as that used in wind tunnel experiments. The
basic configuration is shown in Fig. 1 with the store in the captive position and in Fig. 2 with the store located two
store diameters below the pylon. The wing was a symmetrical airfoil and the leading edge was swept 45 degrees.
The store was an ogive-cylinder with a cylindrical sting joined to the store boattail. The pylon was a biconvex
airfoil shape, and a small gap existed between the store and pylon in both the experimental and computational
configuration. The complete grid was composed of 30 blocks.

The numerical solution was run for a freestream Mach number of 0.85 and zero degree angle of attack.
Numerical and experimental surface pressure distributions on the outboard and inboard sides of the store in the
captive position are shown in Figs. 3 and 4, respectively. Notice that there is a large lower pressure region on the
inboard side of the store (Fig. 4) than on thc cutboard side of the store (Fig. 3). Figure 5 is included to show that
the same thing happens, computationally and experimentally, on the pylon. The result of this pressure differen-
tial would be that a released store would have an initial side force that would push the store toward the fuselage
rather than away from the fuselage.

The reason for the pressure being lower on the inboard side of the store and pylon is attributed primarily to the
presence of the store. Figure 6 is used to argue this point. This figure compares computations corresponding to
the store dropping through a point two store diameters away from the pylon vith steady state experimental data
tu ihic wing and pylon only (no store) at the same flow conditions. Notice that the inboard and outboard pres-
sures on the pylon without the stcre present are now much closer to the same values. (One should note that it is
dangerous to compare unsteady computations with steady state experimental data, but unsteady experimental
data are not availabie and the assumption is made that the store being two diameters away will not significantly
influence the unsteady flow about the wing and pylon.)

Counter-Rotating Propfan

The configuration considered is the GE UDF8-8, a counter-rotating unducted fan immersed in an oncoming
M« = 0.7 axial flow, see Fig. 7. The configuration has two fan rows with eight blades per row. The fore row
rotates clocikwise and the agt row rotates counterclockwise. Both blade rows rotate with an advance ratio, J, of
2.8. The higi:'y swept, tapered, twisted, thin blades are designed to reduce the axial Mach number through the
blading tu alleviate compressibility losses.

The a = 0° solutions appearing herein and in [24) were obtained using only two blocks, one per blade passage
(benefitting from solution symmetry). Although only two blocks were used, axial interblock communication was
implemented with a full buffer ring (temporary storage area for injected or extracted data). The procedure
involves extracting data, imaging the data to form a full 360° communication buffer ring, then allowing the
appropriate data to be injected based on the positional relationship between the blocks and the buffer ring. Each
block mesh was H-type in all directions and contained 56x21x10 (i,j.k) cells.

To begin the transition from the first-order time FVS solutions presented in [24] to the FDS solutions pres-
ently available, consider the comparison of the local relative Mach number of [24] to that of second-order time
FVS with block-block interfaces maintained to the interior level of spatial accuracy (up to second-order for FVS),
as shown in Figs. 8. At first glance it is quite noticeable that the second-order solutions do not expand nearly as
much as the first-order. Presently the cause of this anomoly is under investigation. It is not known whether this is
due to the modifications made to the block-block interface or to the use of three point backward (second-order)
time differencing.

With this noted and under investigation, the transition is completed with the local relative Mach number
comparison between FVS second-order space and FDS third-order space (minmod) both with three point back-
ward time differencing, as shown in Figs. 9. The increase in spatial resolution due to FDS is evident with the
sharper shock definitions and the ability to resolve (to some extent) the geometric subtleties of the blade geome-
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try. Any enhanced resolution would be welcomed considering the extreme coarseness .of the blade chordwise
mesh (only 10 cells from leading to trailing edge). Also, an increase in the tip loading is noticed with the FDS
method.

In Figs. 10, the unsteady behavior or lack thereof as predicted by the FDS method is presented. The curves
are of time-averaged freesiream relative pressure coefficient, C,, with the minimum and maximum local cell
values indicated by the fluctuation bars. From this plot one can get a feel for the regions of greatest fluctuations
and their magnitude. There exists evidence of the inherent unsteady behavior of the flow, though it is by far not
prominent. Figures 10 support the comments in {24] regarding lack of variation in the blade surface relative
Mach number for both fore and aft blade rows. Though little variation is shown overall, there is more variation in
the aft blade row, as expected. The only C, variations of any significance occur on the pressure side of the aft
blade near the root and midspan.

As a final note on the UDF8-8 companson the present FDS integrated performance parameters of power
coefficient, efficiency, and torque ratio, (Cpw, 7, Q2/Q1) respectively, are compared in Figs. 11 to that of FVS§
second-order time and measured data as reported in {25]. Reasonable agreement is shown to exist with the
measured data viewing the inviscid nature of these calculations. Also, the intuitive trends regarding the less
numerically dissipative nature of the FDS method compared to the FVS method is a plausible explanation of the
relative position of the time-averaged data with respect to the measured data. That is to say, one might expect to
see stronger, farther aft (chordwise) shock patterns with FDS resulting in higher compressibility losses; conse-
quentlyl, more power-in for less thrust-out (lower efficiency), as shown in Figs. 11a and 11b would not be
unusual.

5. CONCLUSIONS AND COMMENTS

A numerical scheme was presented for solving the three-dimensional unsteady Euler equations on dynamic
multiblock grids for complex configurations, and comparisons were made with available experimental data. The
numerical formulation used permits extremely large time steps, such that the time step size selected can be
established by the physics of the flow being solved and not the numerics of the algorithm used. This is particu-
larly important for Navier-Stokes calculations where extremely small cells with high aspect ratio (similar to this
piece of paper on which these words are printed) could severely restrict the time step for most algorithms.
Navier-Stokes calculations on extremely fine grids with high aspect ratio celis of this type. have been successfully
carried out by Simpson'® for maximum Courant numbers greater than 10
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Figure 1. Wing-Pylon-Store Configuration with Store in Figure 2. Wing-Pylon-Store Configuration with Store
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A Structured Approach to Interactive Multiple
Block Grid Generation

J.P. Steinbrenner, J.R. Chawner and C.L. Fouts

Computational Fluid Dynamics Group
General Dynamics Fort Worth Division
P.O. Box 748, Fort Worth, Texas, 76101, USA

SUMMARY

The sheer variety of problems found 1in Computational Fluid Dynamics (C¢FD) has
dictated a need for grid generation methods of the utmost generality. Experience has
shown that user interaction and graphical feedback are two necessary features of a
successful method as well. Employing these ideas, a structured method of grid
generation has been developed, allowing a grid system to be constructed
through the use of four specialized codes, accessed on two machines. These codes are
based on the multiple block concept, whereby the flowfield domain is decomposed 1into a
number of contiguous subdomains, allowing for efficient grid generation and flowfield
solution. The first of these codes aids the user in inspecting the flow domain and in

developing a suitable blocking strategy for the block system. A second code is
then used to establish the exact connections between abutting blocks and to set flow
boundary conditions on all surfaces of the block systen. This connectivity and

boundary condition data is accessed in the final two codes to construct the grid itself.
The third code generates the surfaces of each block 1in the system, and <+the final
code distributes grid points on the block interiors. The intricacies of these codes
are explained along with an example, conclusions and projections - >r further work.

INTRODUCTION

Since its inception at the turn of the decade, the idea of multiple-block grid
schemes has become so widely used and accepted that its justification hardly seens
necessary today. Nevertheless, the advantages of a multiple-block scheme over a single
block method deserve mention. The foremost advantage is that by reducing the flow domain
to a number of subdomains, complex geometrical shapes may be modelled mcre easily and
with greater numerical accuracy than with a single block. One need only compare the
geometrical shapes generated routinely today with the more difficult single block
configurations of a few years ago to realize the increased geometrical complexity that
multiple block methods have permitted. Multiple block methods also increase the maximum
total allowable <cize of the computational problem, since only one or a few blocks need
reside in core memory at #ny given time, with the remaining blocks residing on an
external device. This allows multiple block grids with millions of grid points to be
generated and used on computers with enough internal memory for only a small percentage
of the total grid size.

Multiple block flow solver methods have been developed and used at General Dynamics
Fort Worth Division (GD) since 1985. Each Euler and Navier-Stokes solver in use at GD is
structured with the same basic architecture (ref. 1, 2). Each solver is written for use
on a Cray supercomputer, and each retains only a single block in memory at a time.
To make full use of the vectoring capabilities on a <Cray, the total grid system 1is
normally divided 1into as few a number of blocks as possible, with each of the blocks

being approximately equal in size as permitted. This constraint forces an added
generality to the boundary conditions (bc's) - the allowance for several bc types on a
given wall of a block. The solvers described above are used for a variety of

computational flow analyses, and as might be expected, the configurations these codes see
are as varied as the flow conditions, usually involving several geometrical length scales
in a single problem. Furthermore, these analyses are performed in a design environrent,
such that rapid turnaround time is always a high priority.

In view of these constraints, a list of requirements for a multiple block grid
generation package was not difficult to formulate. 1In 1985, the three most crucial
requirements for a multiple block grid system were generality, speed of generaticn, and
accuracy. Coupled to these was the need to apply the grid methods to all in-house CFD
codes and the ability to specify boundary conditions on the cell, rather than face,
level. These considerations served as guidelines for the initial development of the grid
generation system (ref. 3). The requirement for geometric generality was met by making
the codes highly interactive. 1In combination with the interactivity, extensive graphics
capabilities were included to ensure the desired level of accuracy. By making the system
interactive, the time-consuming duplication of effort associated with batch codes was
avoided.

After over four years in development, GD now has a grid generation system which
satisfies all of the rejuirements established in 1985. Today's software allows the user
to generate multiple block grids for generalized configurations and generalized flow
conditions. The volume grid file and the flow solver-specific boundary condition file
created with the codes are directly accessed by the flow solver. The entire software
package is shared between two computers - Silicon Graphics IRIS Workstations and CRAY
supercomputers. On the IRIS, three codes have been developed o' decomposing the
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domain into blocks, specifying .interblock connections and flow boundary conditions, and
generating the block surface grids. Three separate programs were necessary due to the
memory constraints of the IRIS, but the added overhead has not proven to be significant.
The CRAY-based software consists of a single code for the generation of the block
interior points. This code could equivalently be housed on the IRIS, but the need to run
the flow solver on the CRAY and the CRAY's superior computational power make it the
natural choice.

The intent of this pagcer is to outline the procedure routinely used at General
Dynamics for the generation of multiple block grids. Successful generation is contingent
upon delivery of a usable description of the configuration, and so in-house techniques
for conversion of geometric models is explained firsst. Next, the four-step procedure,
encompassing domain decomposition, connectivity generation, surface grid generation, and
volume grid generation is overviewed, explaining both existing and developing
capabilities. Each of these steps is applied towards the generation of a multiple block
grid around the forebody of an F-16 for further illustration of the methods. Finally, an
analysis of the current methodology is made to help project the future direction of this
interactive grid generation system.

GEOMETRY PREPROCESSING

Computer aided design (CAD) has become a standard tool in the aerospace industry for
geometrically defining developing configurations, and the majority of advanced designs
which are used in CFD studies have indeed been created on CAD systems. In many of these
systems, the geometry is represented as a combination of planar cuts and surface splines.
At GD, several CAD packages with differing geometry representations are utilized daily on

various projects. The differences in the various CAD systems, however, have made it
necessary to establish one universal format for direct use in the interactive grid
generation software. In the resulting fcrmat, the entire configuration surface is

represented by a number of patches, each patch containing an m by n well-ordered array of
physical points. We refer to each patch as a network, and to the collection of networks
as a database. There is reasonable generality of the types of suitable networks, in that
retworks may overlap or abut with point, slope or no continuity. For ease cf grid
generation, however, it is desirable to have point continuous networks, although totally
discontinuous database networks will not decrease the range of program applicability.
Since spline eguations are not stored in the resulting database, it is necessary to have
a sufficient number of points in each network to resolve the important geometric
properties of the configuration. A suitable network database for the F-16 forebody is
shown in Figure 1. Fourteen networks are used to define this model, with computational
dimensions varying from 3x10 to 28x25. Notice that the areas of higher resolution in
this model generally correspond to regions of large surface curvature.

Figure 1. Fourteen Network Database about F-16 Forebody

Traditional methods for downloading CAD models to the correct grid generation format
were at best cumbersome, and often required the CAD operator to sort data files by hand,
to respline curves and surfaces, and to rely on visual inspection. It was not unusual
for the operator to invest a week or more to accomplish this task. Consequently, a
program was written in 1988 to streamline the creation of databases on the CATIA CAD
~./~%<m.  In this batch code, » riven surface model is automatically broken into networks,
placing network edges at 1lines of intersection in the surtace ‘odel. TFor simple




configurations, the user time has been reduced to an hour or so, with the tctal
throughput time on the order of four hours. The database creation time for more complex
configurations is not expected to be much more than that required for simpler
configurations. Although this program is currently compatible only with the CATIA
system, work is underway to extend it to other CAD systems as well. This capability will
greatly enhance the interface between the design and the CFD groups.

DOMAIN DECOMPOSITION

Before a grid system can be generated, an appropriate blocking structure must be
devised to divide the problem domain into smaller, more manageable sub-domains. Many
factors are considered when decomposing the problem domain, including the computer
hardware, the flow solver software, and the geometry. The maximum computational size of
a block is restricted by the amount of core memory available on the computer. The
optimal size of a block is also machine dependent. On a vector machine 1like the
CRAY, a small number of large blocks is preferred; on a parallel computer, however, a
large number of small blocks is more efficient. Furthermore, the manner in which blocks
interconnect, such as overlapping or point to point matching, is flow solver dependent,
also impacting the blocking strategy. Finally, geometric complexities of the
configuration being analyzed may impose a practical lower limit on the number of blocks
required; certain complex geometries just cannot be represented with only a few blocks.

Restrictions on the blocking structure imposed by geometrical complexities are
typically difficult to visualize, and are therefore difficult to detect. This difficulty
is usually tempered if a physical model of the configuration is available, but physical
models are expensive, time-consuming to make, and are not easily modified to reflect
geometrical changes. Although still in a development stage, GRIDBLOCK, the first of the
three interactive IRIS codes, offers an alternative solution to this problem by providing
the capability for real-time graphical manipulation of the 3-d configuration. More
importantly, however, it provides 2an cfficiert mzane of invesiigating wad geacrating
bleccking scnemes.

A typical GRIDBLOCK screen is shown in Figure 2. Shown 1is the F-16 forebody
database network with a preliminary blocking structure around the configuration. Both
mouse and keyboard input control the coptions in GRIDBLOCK. The main options of the code
are displayed 1in a menu on the lower left side of the screen. This menu changes during
execution for continual display of currently available options. Above the menu area, a
diagnostic window displays statistics pertinent to the current function. While defining
lines, for example, the current 3-D coordinates of the cursor are displayed. The small
window above the diagnostic window is used for typed user input such as file names and
numerical data. The window above this is used to display step~by-step instructions for
the current function, which leads the first time user through the program and serves as a
reminder for the experienced user.
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GRIDBLOCK begins with a display of the 3-D wire-frame model of the problem
configuration, which is then rotated, scaled, and transluated for further examination. As
ideas for dividing the domain are formulated, three-~dimensional 1lines representing the
bounding edges of the blocks in the structure are drawn by the user about the database.
These lines can be created in a variety of ways, and once created, can be further edited
and modified as becomes necessary. It has been observed that a good understanding of the
entire block can be derived by displaying only the edges of the block. This simplifies
the work in GRIDBLOCK by eliminating the need to define and display surface shapes.

The most straightforward method of composing a multiple block structure in GRIDBLOCK
is to build each block one edge at a time. These edges, called connectors, are composed
of one or more line segments. Several types of line segments are available: straight
lines, elliptic arcs, and smooth cardinal spline curves. These simple segments can be
quickly combined to create virtually any 3-d curve. Each connector terminates in two
nodes, one at each end. Any number of connectors may share a node, and connectors may be
linked only at nodes. As a connector is defined, it is not immediately assigned to a
block edge, but 1is simply a reference line, which is surprisingly helpful when first
developing a blocking scheme. Connectors can later be edited (by moving individual
points, stretching, trarslating, etc.) or even deleted. If a node location is changed,
all connectors attached to that node are modified to maintain the connectivity. Nodes
are drawn as large dots in Figure 2.

Once several connectors are added to the system, they may be grouped together and
assigned to blocks. When twelve connectors are assigned to a given block, the user is
prompted to define computational directions and dimensions on that block. Improper
assignments are not allowed and are indicated to the user. For the F-16 forebody
illustrated in Figure 2, the flow domain has been divided into a total of seven blocks.

Although the simplest, defining blocks one connector at a time is the most time
consuming and monotonous mode of creation. Thus, work on GRIDBLOCK is underway to
provide facilities for creating an entire block (i.e., all twelve edges) at once.
Several basic shapes will pe available, including rectangular blocks (for H-grids), half
cylinders (for C-grids), and full cylinders (for O-grids). These shapes will then be
translated, rotated, and scaled to position in the block structure. All commands
available in the connector mode described above will be carried to this full-block mode,
so that a rough block shape may first be generated, with further connector refinement
performed later as needed. Again, when the block definition is completed, the user will
be asked to supply computational coordinates and dimensions.

Many of the connectors defined in a typical system are shared by more than one

block. A procedure is under development which will determine the user-drawn interblock
connections automatically, and will normally be accessed after all blocks have been
defined. Upon exiting the program, all block to hrlock connections established

automatically will be stored in a file referred to as the BOCON file. The file at this
point will also contain cartesian definitions of the connectors and the composition of
each block (connectors, dimensions, etc.). The set of data defining interblock
connections is then the starting point for the second IRIS code, GRIDBOUND, which allows
the user to complete interblock connections and to set the flow boundary conditions on
all surfaces of the blocks. The cartesian connector information is later accessed in the
surface grid generation routines, and the block composition data is used when restarting
the GRIDBLOCK program. The manner in which the GRIDBLUCK code and BOCON files fit into
the master plan of grid generation is explained in Figure 3.

CONNECTIVITY GENERATION

Once the domain blocking strategy has been developed, the straightforward vet
tedious task of assigning flow boundary conditions and determining remaining interblock
connections must be performed. This is essentially a bookkeeping task which 1is easily
managed with the second IRIS code in the process, GRIDBOUND. Output from GRIDBCUND is
the completed connectivity table (BOCON file), which 4is then wused in GRIDGEN2D and
GRIDGEN3D to maintain grid point continuity across connected block faces. After the
multiple block system is completed, the connectivity data is converted in GRIDGEN3D to a
format for direct use in the flow solver. (see the FLOWCON file in Figure 3)

Like GRIDBLOCK, GRIDBOUND i. an interactive graphics code with input controlled
through pull-down menus, making the program simple to use for even the novice. The
user's initial task in GRIDBOUND is to specify the intended flow solver, so that the
correct set of flow boundary conditions are made available in the interactive session.
Currently three different solvers may be chosen within GRIDBOUND, but the effort required
to permit additional solvers is minimal. As stated earlier, the GRIDBLOCK code is under
development to write out a preliminary BOCON file containing interblock connections
determined in that code. Currently, however, blocks are created in GRIDBOUND through
pull-down menus designed for block definition, and each block 1is initialized with no
boundary conditions.

All blocks are schematically drawn in GkIDBOUND in computational space. Figure 4
shows t*_ ilolh “yoiem aller several different bc's of the seven block F-16 forebody have
been specified. Note that bc types are differentiated in GRIDBOUND by color. Each block
can be rotated independently so that each of the six faces can be examined.
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Figure 4. Typical GRIDBBOUND Screen

Boundary conditions are set by selecting the block, the iace nunmber and the b.c.
type for processing. The user is then prompted for the range of points to which that
boundary condition is to be applied (the source range). The program checks this region,
erasing any existing bc's and removing any connections (on both this block and the
connecting block), bef-re storiig the new he at earh ~81Y face in the region. For flow
sulver bc's, each cell in the source range is shaded with the corresponding bc color, and
the specification is complete. For interblock connections, the intended range of points
on the connecting face (the target range) is input, with the program rejecting improper
connections. Allowable connections are controlled by the type of flow solver selected at
the beginning of the problem. Currently, GRIDBOUND supports both point-to-point matching
and ordered-subset maiching (where one region is an ordered subset of the other), and
connections may be established on the cell level and on the full face level.




GRIDBOUND provides several methods for,  ensuring that all necessary bc's have been
specified as desired. High-light bars can be scanned over each face, with the cell bc at
the intersection of the bars listed at the bottom of the block window. For connecting
bc's, a cell cursor appears at both the high-lighted source cell and the corresponding
target cells. By moving the high-light bars over the connection region, it is easy to
verify that connections are oriented correctly. It is also possible to make all regions
of a specified bc type blink. This tool is especially helpful for quick identification
of regions with no set bc at all, which is usually the final check hefore exiting the
program.

GRIDBOUND offers a number of block editing commands as well. Dimensions of existing
blocks may be changed by adding o1 removing planes of points anywhere in the block.
Blocks may also be split into smaller blocks, with connections at newly created surface
poirtz o~n the dividing plane set automatically. This allows blocks which are continuous
in space to be generated as a single block, to be later divided to satisfy the equal
block size objective. Blocks can also be added later or removed entirely. Changes such
as these affect the overall blocking structure established originally in GRIDBLOCK,
causing the structure to be no longer compatible with surface or volume grids created in
the two codes described next. Therefore, a mechanism to forward the GRIDBOUND changes to
GRIDGEN2D files has been included in GRIDBOUND.

SURFACE GRID GENERATION

The two IRIS codes explained above allow the user to establish the topology of the
system, the interblock connactions, and the flow boundary conditions. These codes may be
thought of as grid generation preprocessors, since they do not determine actual grid
point locations. The grid itself is generated in components, starting with block edges.
The block edges are then used as boundary conditions for the block faces, and the
resulting block faces are used as boundary conditions for the block interior. Both edges
and surface grids are generated in GRIDGEN2D, an IRIS code initiated in 1985 (ref. 4),
and the subject of this section. Since expanded to more than 40,000 lines of Fortran,
GRIDGEN2D now has extensive plotting capabilities, and offers diagnostic windows to aid
the user. A typical interactive window from GRIDGEN2D is displayed in Figure 5.

Starting

As illustrated in Figure 3, both the database and the BOCON file are used as
starting points for surface grid generation. Upon choosing a block and a face to create,
the user divides the face into any number of subfaces. Each subface may span a portion
or the entirety of the face. The subface feature is demonstrated in Figure 6, which
depicts the downstream planes of blocks three and four which abut blocks five through
seven and the inlet face. The block 4 face has been divided into three subfaces, and
note that three of the edges of subface 3 run along the inlet lip. By defining the edges
of each subface, points interior to the entire face may be explicitly specified. The
structure of the subface is easily modified, and in many cases, only a single subface is
necessary.
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Edge Distribution

Each of the four edges of a subface is generated before proceeding with interior
point placement. An edge 1is created in three stages: edge definition, breakpoint
placement, and grid point distribution. The edge definition stage consists of defining
the 3-d shape of the edge by piecing together a number of segments interactively defined
with the keyboard or graphically. Available segment types include edges defined earlier
by GRIDBLOCK, segments traced from the database, simple geometrical curves, curves stored
in exterior files, user-defined curves in 3-d space, and user-defined curves constrained
to a database or grid surface. The first of these segment types, which allows the edge
definitions to be read in directly as defined in GRIDBLOCK, eliminates much of the
duplication and confusion inherent with GRIDBLOCK to GRIDGEN2D transition. The last of
these segment types is particularly useful when distributing interior surface points via
the parametric elliptic modes, as explained later.

In stage 2, breakpoint distribution, the newly defined edge is broken into a number
of subedges, separated at interactively-chosen 1locations referred to as breakpoints.
Grid points are automatically placed at breakpoints and at the beginning and end points
of the edge. Breakpoints provide a convenient means of clustering grid points at various
locations along the edge.

In the final stage, the edge grid points (as specified by the block dimensions) are
distributed between breakpoints as the user requires. Initially grid points are
distributed at equal arc increments, but the number of grid points and their relative
distribution between breakpoints may be user-set. 1In addition to equal spacing, grid
points along an edge may be distributed by either a two-sided hyperbolic tangent function
(ref. 5), a one-sided geometric stretching function, by clustering to edge curvature, or
by scaling a distribution function defined elsewhere in the grid. This latter
distribution method 1s an easy way to maintain the same general clustering at opposite
edges of a given face.

The entire edge generation process in GRIDGEN2D is menu-driven with a continuous
graphics display. Any of the three stages above may be entered or reentered during edge
construction. Graphical editing is added to allow for minor changes wiihout duplication
of effort, and on-screen help-menus are provided to assist the unfamiliar operator. The
availability of linear, cubic and exponential splines (ref. 6) provides an additional
degree of numerical control, and these edge splines may be applied to x, y or 2z
coordinates, as well as to the arclength.

Interior Point Distribution

Grid points 1incerior to a subface are initialized by interpolating from the
subface's four edges. Several algebraic methods are available for initialization,
including transfinite interpolation with linear and arclength based (ref. 7)
interpolants, and polar interpolation, which distributes points around a user-chosen axis
in 3-d space.

Occasionally the algebraic initialization schemes are sufficient for the user's
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purposes, but the majority of algebraic grids require further refinement. The
initialization methods described above interpolate solely from the edges, and generally
do not affix interior points on the intended shape of the surface, defined either by
database networks, by interpolation, by planar surfaces, or by LaPlace's equation. When
the surface shape is defined by database networks, therefore, the provisiocnal surface
must be interpolated onto the intended surface. In GRIDGEN2D, the interpolaticn proceeds
in only the z physical coordinate, with the x and y coordinates held fixed. This means
that it is often necessary to rotate the grid before the interpolation takes place, so
that the optimal orientation of interpolation is aligned with the z physical axis. This
rotation is done graphically so that the user can be confident of the chosen orientation
for interpolation.

Interpolation of the z-values guarantees the correct surface shape, but makes no
guarantees about the distribution of points on that surface. When the interior point
distribution after interpolation is not acceptable, an elliptic solver is utilized.
Elliptic solvers redistribute interior grid points to satisfy a set of elliptic partial
differential equations (pde's), specifically a transformed set of Poisson equations.
Solutions to elliptic equations of this form are generally smooth, and obey a maximum
principle (no grid crossing) in the case of LaPlace's equation, so they are natural
candidates for grid generation.

There are four modes of elliptic solvers in GRIDGEN2L. The first two solve directly
for the new grid point locations (%, y and z) in an iterative process. For planar or
nearly planar problems (where surface shape is not crucial, as in block interfaces), the
2-d equations of Thompson (ref. 8) are solved. For 3-d surfaces where shape is
important, the modified Thomas (ref. 9) equations are solved. This latter set accounts
for the curvature of the surface in the driving equations, essentially solving the
equivalent Thompson equations on the 3-d surface. In each of these methods, only x and y
values are calculated by the pde's, with z values updated through database interpolation
(when applicable) as described above. Both methods also require that the surface first
be rotated to a single-valued orientation in the z direction. When no suitable rotation
exists, as in cylindrically shaped grids, it is necessary to divide the face into several
subfaces, and to work on one subface at a time (see the beginning of this section).

The dissection of a given face into single-valued subfaces and the corresponding
solution of the elliptic equations on these subfaces tends to be a tedious task. For
this reason, two other elliptic solver types are included in GRIDGEN2D. Both techniques
incorporate the same driving equations as above, but solve the grid in parametric
coordinates, rather than in cartesian coordinates. These two parametric solwvers employ a
modified form of the equations popularized by Warsi (ref. 10), and differ only in their
choice of parametric variables.

The easier to use of the parametric solvers we refer to as the subface parametric
mode. Here, parametric coordinates are initially set equal to the computational indices
of the existing face, and the elliptic equations are solved on this initial grid. This
method is useful for subfaces which maintain the correct surface shape but have an
unacceptable distribution of points on that shape.

The second parametric mode is referred to as the database parametric mode. 1In this
mode, edges of the face are first generated in terms of the computational coordinates of
a selected database network. With this technique, parametric coordinates are then
interpolated onto the face interior, with Cartesian coordinates in turn interpolated from
parametric coordinates. The elliptic solver is then run in a manner similar to the
subface parametric mode. Although this solver is the mosi difficult of the four to use,
the difficulty lies in understanding the concept, and not in the mecnanics of running the

solver. Because this elliptic solver mode requires that only one network be used to
define the surface, it was necessary to equip GRIDGEN2D with an extensive database
network manipulation routine. In this routine, networks may be scaled, translated,

reduced and duplicated in a graphical, interactive environment.

The idea and mechanics of the GRIDGEN2D parametric elliptic solvers are explained in

Reference 11. Because this method uses the standard Thompson (ref. 8) equations in a
transformed parametric space, the resulting grid will be independent of the actual
parametric representation, This is in contrast to other parametric methods (c.f. ref.

12) employing an abbreviated form of the parametric equation, which require a smooth
distribution of parametric coordinates in physical space to insure a smooth surface grid.
The biggest advantage of parametric solvers is that there is no need to rotate the
surface grid to a single-valued orientation, as is often the case for the standard
elliptic solvers. This permits the very easy generation of generalized surfaces.
Drawbacks of the method are that set-up time is a little longer, and the numerical scheme
is slightly slower.

Embedded in the standard elliptic grid generation equations is a set of functions
which influence the distribution of grid points on the interior. Various forms of these
control functions have been proposed over the years, and three of the more proven methods
have been incorporated into GRIDGEN2D. These methods include those of Thomas and
Middlecoff (ref. 13) and Sorenson (ref. 14) and each method is extended in GRIDGEN2D
for use on 3-d surfaces, rather than 2-d planes. The third method backs out the control
functions from the existing grid, and then smooths the values, so that kinks in the
original grid will be removed while maintaining the important features of the gria.




When engaging the subface parametric solver described above, it is possible within
GRIDGEN2D to enhance the control functions for a further degree of grid point control.
By attaching a solution array obtained from an external source (such as a flow solution),
grid points may adapt towards gradients in the solution by the method described in
Reference 15. A magnet function may also be applied, in which the user graphically
defines curve and point magnets on the surface where additional grid point clustering is
desired. Both of these methods c¢reate components which are added to the control
functions described above.

Several additional features 1in the elliptic solvers deserve mention. First, there
is an interactive display of the surface grid during the execution of the solver,
allowing the user to visualize the grid's iterative convergence. Further, the view of
the grid may be manipulated between iterations. Secondly, any number of subfaces may be
loaded into the elliptic solvers at a time, so that the entire face may converge
uniformly. Finally, edge boundary conditions other than Dirichlet (fixed) may be
selected for each edge of each subface. Orthogonality conditions will slide edge points
along the original shape to enforce an orthogonal intersection with the edge. Abutting
conditions allow for differencing across edges which are adjacent in physical space but
not in computational space. This latter feature, along with the multiple subface solving
is equivalent to a multiple block capability on the surface, rather than the volume
level.

Finishing Up

The surface grid generation procedure explained in this section is repeated for each
subface 1in the face, and for each face in the block. When a given block is completed,

the next block to be generated is loaded into memory. In so doing, all interblock
connections from the previous block are updated to the remaining blocks in the system.
This procedure insures that each block interface need be generated only once. Once all

faces of each block have been created, the surface grid generation is completed. Several
faces of the completed seven block F-16 test case are shown in Figure 7. The final step
in GRIDGEN2D is to save the multiple block surface file, referred to in Figure 3 as the
SURFGRID file, and to run the GRIDGEN3D preprocessor. This preprocessor is accessed from
the GRIDGEN2D menu and creates the job control language (JCL) and input data needed to
start the volume grid generation on the CRAY.
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Figure 7. Completed Seven Block Grid about F-16 Forebody

VOLUME GRID GENERATION

The fourth and final step of the grid generation process is the distribution of grid
points within the interior of each block. This task is performed with the batch
procedure GRIDGEN3D, the only one of the four codes written for a CRAY supercomputer (see
Figure 3). The philosophy behind the development of this batch procedure has been to
utilize as much of the high speed and 1large core memory of the CRAY as possible,
since these features aren't available on today's affordable workstations. Thus, the
number of blocks is minimized in order to maximize the vector length of each calculation.
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An additional benefit of using fewer and larger blocks is that the number of block
interfaces is reduced. When the blocks sizes are large, however, the surface grids must
be of sufficiently high quality, so that special treatment of the block interior points
is not required. GRIDGEN3D, therefore, operates on the premise that the user has
carefully utilized GRIDGEN2D to produce good surface grids. When a small number of
blocks is used to discretize a domain, it also becomes necessary to allow for multiple
boundary-condition and interface types on each face, which adds to the complexity of the
code. We have considered this problem to be tractable, however, in 1light of the
computational efficiency offered with large blocks.

Naturzllv other researchers have taken different approaches to volume grid
generation. Seibert (ref. 16), for example, manages to perform edge, surface and volume
grid generation within a single code. The advantage of this approach is clear; both
overlap time and the transfer of files between codes 1s eliminated, greatly simplifying
the process. On the other hand, Thompson's EAGLE code (ref. 17) was originally designed
as a CRAY batch procedure for both elliptic and algebraic surface and volume grid
generation. The advantages of EAGLE are that the batch procedure is more easily
understood and applied, and that the computational time required for grid generation is
reduced. The GD grid programs are a compromise between these two disparate approaches;
the user intensive tasks such as surface grid generation are performed using interactive
procedures on a workstation and the number crunching of volume grid generation is
performed on a supercomputer using GRIDGEN3D.

User-friendliness is as much a part of GRIDGEN3D as it is a part of the interactive
grid programs. In fact, it was easier to build user friendliness into GRIDGEN3D because
it is a batch procedure with a uni-directional flow of operations. GRIDGEN3D was written
in as general a manner as possible for easy application to a wide variety of
configurations. No assumptions are made in the code concerning the grid topology or the
orientations of the computational indices. A variety of robust grid generation methods,
similar to those used in GRIDGEN2D, are available in GRIDGEN3D, and each method has been
formulated to account automatically for point or line singularities. A great deal of the
user friendliness of GRIDGEN3D comes from the minimal amount of input needed to compute a
volume grid. As mentioned earlier, a preliminary GRIDGEN3D JCL file can be created while
still in GRIDGEN2D. Default values for all inputs are based on data from the BOCON file
and each input 1is checked for consistency with its related input variables. CRAY
procedures have been written for the JCL to minimize the mechanics of running the code;
only six or seven lines of JCL are currently required.

The grid generation methods in GRIDGEN3D are the volume equivalents of the surface
methods employed in GRILGEN2D, Algebraic transfinite interpolation with either linear or
arclength (ref. 7) based interpolants is used to provide an initial volume grid. In
many cases the volume grid produced using the arclength interpolants is sufficient (since
the surface grids are generated with careful attention to quality) for flow calculations.

In the event that further refinement of the provisional volume grid is necessary, an
elliptic pde grid solver is available in GRIDGEN3D. This solver may be run with any of
four different control function types, in order to help the user meet his requirements

for smoothness, clustering, and orthogonality. A smooth grid may be obtained using
either the LaPlace control functions or by smoothing the control functions in the
existing grid. The control functions of Thomas and Middlecoff (ref. 13) are used

whenever interior clustering is required. Finally, the Sorenson control functions (ref.
14) can be used to maintain orthogonality and clustering at user-specified faces.

When running the elliptic solver, grid line slope continuity is maintained at block
interfaces by moving the face, edge, and corner points where indicated by bc data from
the BOCON file. To provide boundary point movement, a single layer of ghost points is
saved around each qrid block. On the portions of the faces corresponding to connections,
ghost points take on the coordinate values of the grid points immediately inside the
connecting block. This allows central differences to be used when grid points on the
interface are moved. Edge and corner movement also uses the ghost point coordinates, but
employs a one-sided approximation for the mixed derivative terms.

A parametric elliptic solver similar to the one in GRIDGEN2D has also been developed

for volume grid generation (ref. 11). In this method, new grids are generated in terms
of the computational indices of the original grid, which lends itself to adaptive grid
applications quite naturally. To generate an adaptive grid, flowfield data from a

partially converged steady state solution is used to form a control function that
clusters grid points to flow field gradients, such as shock waves. This method is still
under development, but is planned to be incorporated into GRIDGEN3D in the near future.

GRIDGEN3D reports the quality of the volume grid to the user by tallying the number
of positive, skewed, and negative volume cells in the grid and by computing a measure of
the grid quality as defined by Strang (ref. 18). Using this data the user can plan
further GRIDGEN3D runs. The volume grid can also be transferred from the CRAY to the
IRIS so that it may be visually examined using the GRIDVUE3D graphics program (see Figure
3). Within GRIDVUE3D, planes of constant computational coordinate may be scanned in
real-time, providing a first hand confirmation of grid quality. A unique feature of
GRIDGEN3D is its ability to translate the BOCON data into a boundary condition file
(known as the FLOWCON file) for use with one of its associated flow solvers. Since
setting up the boundary conditions is an error-prone and man hour intensive task, this
feature of GRIDGEN3D results in a large time savings. This FLOWCON file and the
resulting volume grid (VOLGRID) file are generally the only significant inputs needed to
begin running the flow solver (See Figure 3).
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FUTURE PLANS

The grid generation methods described above have proven to be effective tools in the
application of CFD to the aircraft design process. For example, the sample grid shown
throughout this paper could be generated today in about a week. Although this time is a
vast improvement to the <ctate of a couple of vyears ago, it is still significantly
longer than that needed for complete integration of CFD into the design environment.
In order to meet this goal, several improvements are planned for our methods. The
near term improvements will fit within the four code framework we have established
and are described below.

GRIDBLOCK, the most preliminary of the four codes, is considered a major key to
faster turnaround. Improved drawing and edge manipulation commands are continually
implemented. Nevertheless, complicated blocking structures are still difficult to
visualize because of the complexities of typical aircraft geometries. Therefore,
semi-automated domain decomposition methods are being investigated. Automated domain
decomposition methods have already been proven (ref. 19) for certain applications, and it
is believed that such methods 1in GRIDBLOCK would reduce time spent in that code
considerably. Work 1is already underway to allow GRIDBLOCK to determine complete
blocking structures automatically for certain classes of airplane topologies (e.g.,
wing, wing-body, etc.). This capability will be most instructive to the novice user, who
may have no 1idea how to devise a suitable blocking scheme. After a blocking
structure is automatically generated, the user can interactively modify the structure,
adding refinements or changes as required.

The GRIDBOUND code has proven to be an easy code to understand and to use.
However, since it 1is sometimes difficult to recognize blocks by their computational
representations (see Figure 4), the GRIDBLOCK and GRIDBOUND codes will eventually
be combined into a single code. The user will be able to toggle between physical (x,y
and 2z) and computational representations of the multiple block systems. As edges are
combined to form blocks in GRIDBLOCK, they will automatically be written to the BOCON
arrays. By examining how edges are shared between blocks, the majority of block
connections can be detected automatically by the code.

GRIDGEN2D is clearly the most extensive of the four codes used for multiple block
grid generation. There are no specific improvements planned for GRIDGEN2D, although
slight modifications are continually being made on user suggestions.

GRIDGEN3D will continue to be the batch volume equivalent of GRIDGEN2D. However,
the volume grid generation process will be greatly simplified by removing the CRAY
specific coding from GRIDGEN3D. This will allow GRIDGEN3D to be run on a workstation
along with the three other grid codes, eliminating the need for file transfer and
conversion procedures. The simplification of the overall four step grid generation
process should more than make up for the loss in computing speed. In order to enhance
the grid generation procedures within GRIDGEN3D, the adaptive methods described in the
body of this paper will also be incorporated into the code.

The long term plans for our grid generation methodology are much harder to project
because they are dependent upon advances in computer hardware and software. Already the
dividing lines between the codes are overlapping. For example, definition of edges can
be performed both in GRIDBLOCK and GRIDGEN2D. Eventually, this gray area will be removed
by combining the four codes into one unified, interactive code. This implies, of course,
that workstations will have grown enough to allow core memory to contain all of the
blocking, connectivity and grid point data simultaneously. Also, the workstation CPU's
will have to become fast enough to make interactive volume grid generation
practical. A single unified code will signifi-~antly streamline the process, allowing the
user to maintain his train of thought by eliminating much of the dead time needed now
for transfer of files between codes.

As intimated earlier, the biggest challenge in generating a multiple block grid
system is in suitably decomposing the domain into blocks. 1In fact, in many applications,
a sizable portion of the grid generation process can be automated once the blocking
structure is determined. It will therefore be prudent to investigace methods for
antomating the domain decomposition process as well. Artificial intelligence (AI)
methods continue to gain in popularity and applicability, and have recently been used for
two-dimensional domain decomposition (ref. 20). Progress in this field is certainly
worth watching carefully. Al methods may also find their way into the volume grid
generation arena, whereby an expert system could control the elliptic pde solver to
obtain grids which meet or exceed predefined quality measures. Finally, as new control
function formulations, pde solution algorithms, and adaptive grid strategies are
developed, they will be incorporated into the code.

CONCLUSION

A structured, four code approach to multiple block grid generation has been
developed for use in an aircraft design environment. Three of the four codes are
interactive graphics procedures which give the user the ability to decompose a flowfield
domain into multiple blocks, specify inter-block connections and flow solver boundary
conditions, and generate grids on each of the six faces of each block. Generation of
grids on the interior of each block is performed usina a batch procedure that is run on a
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supercomputer. These four codes generate multiple block grids for use in solving the

full Navier-Stokes equations about complex aircraft. Their greatest utility is
their emphasis on interactivity and graphical feedback which allow high quality
grids to be generate with a minimal effort. Improvements are continually sought to

increase the speed of the grid generation process. Most of these improvements involve
methods of grid generation automation, and are expected vo reduce the time needed to
develop a multiple block grid system even further.
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A multiblock grid-generation procedure emvedded in a numerical flow simulation system is described.
Major features of the grids are: suitable for complex aerodynamic configurations,; grid lines continuous,
in particular, over block {aces; grid lines not slope-continuous over block faces; topology and geometry
of block decomposition first specified, and then grid-point distributions; application of transfinite
interpolation and elliptic techniques.

It is possible to construct multiblock grids around complex configurations wita 250-1000 blocks, and
to compute (Euler) flows on such grids.

New technical concepts are proposed, to improve the accuracy of the flow simulation results, and to
reduce manhour investments in the construction of multiblock grids. These concepts concern a. the use of
compound faces and edges, and b. the application of grid refinement per block and per coordinate
direction, to remove the constraining effect of grid-Tine continuity on grid-pcint-density cont.ol; c.
the use of new techniques for analytic aerodynamic geometry modeling, to reduce the dependence on non-CFD
geometry software packages; d. the control of grid quality and acceptability with weight functions in the
independent variables of the 3D vector functions defining the geometrical shape of edges, faces a-=1
blocks, and e. use of hyperblocks to speed up the block decomposition.

1. Introduction

The purpeose of this paper is to present the current status of the grid-generat.on researci. and
development work at NLR and AIT, to report about practical experiences with the current grid-generation
procedure, and to ocutline improvement plans now in execution.

The aim of the current grid-generation activities at NLP and AIT (NLR cooperates also closely with
Fokker) is to provide computer codes for the construction of grids for Euler-flow calculations around 3D
complex aircraft configurations. Propeller-slipstream simulation for transport aircraft is of particular
incerest. Fnsuring growth-potential of the grid-generation codes for NaS (Navier-Stokes) flow
caiculations is also of importance.

The material of this paper is presented as follows.
In section ., grid-generation i{s analyzed as a subtask in CID calculations for industrial aerodvnaric
design tasks or for aerodynamic research tasks. Here, user-requirements for a grid-generation procedure
are araiyzed from this viewpoint.
Section 3 1s a technical description of our current grid-generation procedure.
Section 4 is a report of Iimportant experiences with this grid-generation procedure.
Cection 5 1s a summary of new technical concepts that may be used to improve the grid-generation
procedure.
Section 6 {s a summary of conclusions.

The grid generator described here produces multiblock grids, and not unstructured grids. The choice
{ssue involved here, 1s briefly discussed in section 2.4 (Ratioualisation of technical choices), and in
the references mentioned there. Further, our expectation that algebraic mesh tuning techniques can
perhaps be made more efficient than elliptic mesh tuning techniques is discussed in section 5. Adaptive
gril- generation 1s not discussed here, except that from the remarks in section 5 conclusions can be drawn
about the way how growth potential in this direction is secured.

2. The design of a grid-generation procedure

2.1 Grid-generation as a subtask in CFD calculations

The construction of grids is the first subtask in a numerical flow simulation. In our case, the
subtasks of a numerical Eule. (or NaS)-flow simulation are those of figure 2.1,

topological block decomposition

geometrical block decomposition grid construction around a given aerodynamic configuration,

generation of multiblock grid
. flow simulation, and
. vigsualisation of flow.
The grid-generation procedure is thus subdivided in three closely related subtasks. At the input side,
this procedure accepts arbitrary aerodynamic configurations, e.g. aircraft configurations for
propeller-slipstream simulations. At the output side, grids that can be accepted for numerical flow
simulations have to be produced.

2.2 User-requirements modeling for grid generators
When a grid-generation procedure must be designed, the first step 1s to carefully prepare a list of

user~requireuwents for this procedure. This user-requirements 1ist is a basis for the formulation of
rational balanced answers to a variety of questions. These user-requirements are a specification of:




- which aerodvnamic grid-generation functions have to be possible with the grid-generation procedure.

- what classes of aerodynamic configurations are specified as input (e.g. aerofoils, wings, aircraft
parts, complete aircraft), how these are defined (e.g. point collections with/without interpulation
rules), where they are generated, etc..

- which structure and properties the grids should have that are produced at the output side, how their
quality is defined and measured.

- what acceptance criteria must be satisfied (e.g. manhour investments required for the construction
of a grid of acceptable quality, grid-smoothness properties, etc.).

The analysis of these user requirements involves an estimate of what technical resources are available to

implement the required functions in a grid-generator code. These resocurces are e.g. numerical

grid-generation methods, and available computer/network/workstation configurations.

2.3 VUser-requirements for grid-generators

Figure 2.1 illustrates that, at the input side of the grid generation task, one has to obtain given
aerodynamic surface configurations, including those for complete alrcraft. These surfaces are smooth,
except at edge lines, and a few vertex points.

Aerodynamic-surface data can be delivered (via file interfaces) from a large variety of sources,
e.g. data bases in different software packages (SIGMA, AEROLIS, GAMMA, COMPVIS, CATIA, PATRAN), which are
operational on different computer systems with different operating systems. Further, these data on files
are usually in various formats. This wealth of possible input sources has requirements as a consequence.
- Anyv aerodynamic 3D configuration must be acceptable as input. In particular, the grid generator code

must have excellent means for the representation of the geometric shape of aerodynamic aircraft

surfaces.
- This input must be acceptable from any source, via a standard input file.
This standard input file has a very simple format, so that writing small conversion programs for bringing
geometrical data into the format of this file requires negligeable effort.

At the output side of the grid-generation task, multiblock grids are produced. User requirements for

this output are as follows.

- The grid boundaries should approximate with sufficient accuracy the geometric shape of the flow
boundaries.

- The quality of the grids shouid be such that discretisation errors of flow-simulation results, which
are due to the grid, can be made smaller than an arbitrary user-specified upper limit.

- The grid-generation procedure should be loosely coupled to the flow simulators (Euler, NaS).

Starting point for a definition of grid quality and acceptability is the control of discretisation
errars of flow-simulation results. ldeallv, discretisation errors should be smaller than user-defined
npper-limit values, and the grid should allow this. This leads to quality and acceptability criteria for
srid data, llke

mesh sizes (In principle, it should be possible to make mesh sizes arbitrarilv small, by

enrichment),

grid-variation (including slenderness and shewness variation), and
. Tecal grid smoothness in the flow domain.

Two «onclusfons follow from simple asymptotic error analyses of discretisatiouns of equations.

- To perrit, that local discretisation errors can be made smaller than any small predefined upper
limit, enrichment (ircrease ~f the total number of grid points in a fixed flow volume, e.g. a block)
has to be pessible, fo any degree. A grid is said to have sufficient quality if, everywhere on the
grid, the local discretisation errors can be made smaller than a small predefined limit value.

- Further, tor a given tixed total number of grid points In a given fixed volume, the grid is
acceptable from the point of view of discretisation efficiency, i{f the local cell shapes vary over
the volume {n such a wav that a roughly uniform distribution of discretisation errors of simulation
results !s obtalned, because usually this will be optimal. Optimal error variation in a given flow
domafn volume for a given number of grid points is thus an economic acceptability criterion.

The notfon ot loncal grid smoothness deals with the conditions under which discrete equatinng are
second-order accurate. Usually, during a consistency and error analyses of discrete equations, it is
required that the grid fs sufficiently smooth. It has to be so smooth that the local 2nd-order accuracy
of discrete conservation equations and boundary conditions is not destroyed bv too much variation of the
grid. This sets lim{ts to mesh stretching and a few other functions describing 2nd-order behaviour of the
grid. When grids are varving, sutticient grid smoothness {s thus a second acceptability criterion.

An other important acceptability requirement is that it should be possible to produce blocked grids
around complete atrcrart by an experienced CFD specialist in about two working days. This requirement is
not vet met by us with our current means, see tahie 2.1.

subtask in Fuler-tlow simulation (CODE) NASA-langley F100 F50 G222
wing-nacelle-
prapeller
topological block decomposition (PATRAN, GAMMA) 4 weeks 3 weeks 2 weeks 8 weeks
geometrical block decomposition (GAMMA, AFROLIS) 4 weeks 3 weeks 2 weeks 8 weeks
generation of wulitiblock grid (EGRID) 4 weeks 2 weeks 2 weeks 8 weeks
one Fuler-flow simulation (ESULV) } week ¢ weck } week -
one viaualisation of results (VISU3ID) } week i week } week -

Table 2.1 Rough estimates of amounts of manpower investments, spent to subtasks in executed
Fuler-flow simulations

This table explains one reason why our current development and research efforts are cancentrated on
improvement of the Fuler-tlov simulation system in the area of aerodynamic-geometrv handling and grid
generation. (rid des{:n requires too much manpower compared to the other subtasks In numerical flow
simulation,




Other acceptability requirements for the grid generator procedure are the following onmes.

- Interactive options for the manipulation of aerodynamic surfaces in the grid-generation prccedure
(grid points on configuration surfaces should remain on those surfaces when their position is
shifted).

- Tuning of the quality of acceptable grids on coarse grids on workstations, and tuning of
corresponding fine grids in batch on a supercomputer.

2.4 Rationalisation of technical choices

Based on user requirements formulated in section 2.3 (in fact, these define only what input and
output of the grid generation process is desired), a preliminary technical design of a grid generation
procedure was prepared, [1,2]. Thereby, a cholce between variovs alternative grid-generation techniques
and related technical issues had vo be rationailzed. Our considerations and decisions were summarized in
[3], see also [11].

2.5 Test library

To test the grid generation procedure under development, a library of test cases is defined. This
library consists ot a few aerodynamic configurations which complexity is estimated to be representative
for what one may encounter in aircraft-design and in aerodynamic research environments. Included in this
library are a few full transport aircraft configurations or important parts of them,

- the NASA-Langley propeller-nacelle-wing configuration, (4],
- the F100 and F50 aircraft configuration (c.f. [9]), and

- the AIT G222 configuration.

See figure 2.2 - 2.4,

3 Technical description of the grid-generation process

The grid generation procedure is based on the application of the following technical concepts.

1. Flow domains are made finite. Grids are made boundary conforming.

A multiblock approach 1is applied.

3. The block decomposition of the flow domain around a given 3D aerodynamic configuration is done in two
steps.

a. First, the topology of the block decomposition is defined. Purpose of this step is the construction
of topology tables that describe how the vertices, edges, faces, and blocks in a block
cdecomposition are connected to each other, and what are the positive directions of curvilinear 3D,
2D, or 1D, boundary-conforming coordinate systems in blocks, in faces, and in edges, respectively,
see [5,6]. In this stage, it is possible to work with very rough geometric approximations of the
true geometric shape of aerodynamic contiguration surfaces, so that e.g. the geometry software
package PATRAN can be used. (However, see the remarks in section 4.) Data sizes are relatively
small, in this stage.

b. In the second step, given these topology tables, the corresponding geometric shape of the blocks
and 1ts faces and edges, and the position of the vertices are defined.

In particular, the germetric shape of block faces on the aircrait configuration are defined from
the given input of the grid generation procedure. This geometric shape is stored in the form of
function prescriptions (not: points to be interpolated in an unspecified way).

logically, we consider these two steps as strictly sequential, so that data for the geometric shape of

block faces, edges, and vertices are defined on top of data for the topology stored in topology

tables. Below it will become clear that this hierarchical data structuring is used to obtain simple
geometry-definition procedures for large numbers of block vertices, edges, and faces in the flow
domain.

4. Blocks are packed block-face to block-face, without gaps or overlaps. Algorithms in flow simulators
for the coupling of flows over block faces may thus be based on 2D data structures, which offers good
opportunities for vectorisation and parallellisation of algorithms.

5. The geometric shape of each block face (including those on given aerodynamic configuration surfaces)
ie defined by given functions of two parameters. These functions define smooth block-face surfaces.
The function prescriptions are required in the grid generator, when grid points in given block-face
surfaces are computed.

6. Transfinite interpolation is used to initialize grid-point distributions, see point 9 below.

7. Elliptic grid-generation, witi user-controlled scaled dimensionless weight functions for mesh-size
tuning, is used to tune a grid, see [1,3,5,61, and point 9 below.

8. Grid lines are made continuous over block faces and over block edges, but not slope-continuous, see
figure 3.1. When the grid would be required to have more smoothness over block-faces, this would
simplify the grid-generation and flow simulator algorithms, because a number of special algorithms at
block faces are then no longer needed. However, in such cases, the control of the acceptability and
quality of the grid near corners like that of figure 3.2 will usually become a problem. A rigorous
solution is not to require slope-continuity. The corresponding complications in the numerical
algorithms in the flow simulator can be solved by standard numerical techniques, [7,8].

9. A further advantage of requiring only grid-line continuity over block faces and face edges is that the
grid-generation procedure may be decomposed into a sequence of three substeps. This decomposition
offers good options for controlling grid quality and acceptability (as defined in section 2.3)
locally, in a sence made precise in point 10.f. The substeps are as follow.

a. First, the grid in the interior of each block-edge curve is constructed, with the two given vertex
points kept fixed. For each edge, a 3D vector function defining the geometric shape of the edge
curve, is given. The grid pointa on the edge interior are usually defined by an elliptic technique.
Thereby the grid points are shifted along the edge curve to desired locations, specified by a
given, user-defined, positive weight function w(f).

b. In the second step, the grid in the interfor of each block-face surface 1s counstructed., with the
grid in each edge curve known now. For each face surface, a 3D vector function defining the
geometric shape of the face surface, {s given. To obtain an initial grid in the face, transfinite
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bilinear interpolation in the two independent variables of this vector function is applied. Thereby
the independent-variable values at the given grid points on each of the four face edges are
bilinearly interpolated to independent-variable values at interior grid points in the face. These

' are subsequently substituted in the vector function prescription to chtain the grid points on the
face. Usually, in a large percentage {(say, 80%Z) of the block faces, this transfinite interpolation
procedure produces in faces acceptable grids of sufficient quality.
When the grid in a face produced by the transfinite bilinear interpolation is unacceptable or of
insufficient quality, elliptic mesh tuning is subsequently applied to define in the face the grid
point distribution, using two partial differential equations (these are particular forms of

! spring-analogy equations) to define the required independent-variable distributions.

c. In the third step, the grid in the interior of each block volume is constructed, with the grid in
each of the six blocks faces known from step b. In each block, to obtain an initial grid, trilinear
transfinite interpclation in the given grid points on the six block faces (defined in step b) is
applied, with the computational coordinates (£, n, &) € [0,1]® in the block volume as independent
variables. Usually, this produces in nearly each block acceptable grids of sufficient quality. In
blocks, where this 1s not the case, the grid points are defined by solving subsequently three
elliptic partial differential equations (c.f. [3,6,7] for details about their definition).

10.Analysis of the structure of this 3-step grid-construction process, first in edges, then in faces, and
finally in blocks, shows that various easy understandable mechanisms are available to control the
acceptability and the quality of the multiblock grids to be produced.

a. For a given block-decomposition topology, the position (in the flow or on the aerodynamic
configuration) of each vertex point can be arbitrarily defined within usually wide limits.

b, The geometric shape of each edge curve segment can be arbitrarily defined, between its two vertex
points. In our algorithms, a straight line segment between the two vertex points 1s the default
edge shape.

¢. The geometric shapc of each face surface segment can be arbitrarily defined, between its four edge
curves. In our algorithms, a bilinear transfinite fit between the four edge curve segments (these
can thus be completely arbitrary continuous curves} iIs the default face shape.

d. Given the topology of a block decomposition of a flow domain, there is thus much flexibility in
using the block-decomposition geometry for the control of the acceptability and quality of the
multiblock grid constructed on top of it.

e. Because it 1s required that grid lines are continuous over block faces and over face edges, there
exist tight relations between the total number of grid lines in the various computational
coordinate directions in the blocks, the faces, and the edges, which constrains the control over
grid quality.

f. However, in each edge, for each given total number of grid points in the edge, the distribution of
the grid points can be completey freely chosen. This offers thus good options for local mesh tuning
in edges.

Similarly, in each face, the distribution of the grid points in the face interior has only to be
matched smoothly to the grid point distributions in the four edges. And in each block, the
distributions of the grid points in the block interior has only to be matched smoothly to the grid-
point distributions in the six faces.

g. A grid in an edge defines only the grid in each face and block which nas that edge on its boundary,
sut the grid in the other blocks and faces 1is completely independent of the grid in that edge. This
property offers the posibility to adapt grids only locally, by modifying the geometric shape of
that edge, and/or the grid-point distribution in that edge.

Similarly, modifications In the geometric shape of a face, and/or the grid-point distributions in a
face or in a block, change a grid only locally. This 'locality' property i{s extremely useful when
improving grids, by manual interaction for example.
I1.A summary of the various mechanisms for the control of the acceptability and quallty of grids is
listed in the table below.

. Vertex-point positions,
manipulation of block-decomposition
edge-curve shapes,
geometry (of given topology).
face~nul fade shapes,
Numbers of grid points, per coordinate direction
(constraining effect of grid-line continuity). .
Grid-point-distribution control from edges into faces into blocks, using user-defined positive
dimensionless weight functions, in edges, and in faces and blocks only if required.
. Three-step procedure: edges + faces + blocks.
. Grid-control {s local,

4. Experiences with the grid-generator procedure

From experiences with the grid-generation procedure with the aerodynamic configurations listed in
table 2.1, {t was found that the procedure satisfies most requirements of section 2.3 (User requirements
for grid generators.) It is possible to construct multiblock grids around complicated 3D aerodynamic
configurations, and Euler-flow calculations including propeller-slipstream simulations can be made with
success.

i A few examples of constructed grids are presented in figures 4.la through d.

Strong points of the grid-generation procedure were found to be the following.

{ |. The face-to-face packing of blocks (without gaps or overlaps) and the continuity of the grid lines
over block faces and over face edges leads to simple data structures in the grid-generator code and in
the flow-simulator code.

2. The advantages of requiring only grid-line continuity over block faces and over face edges, and no
more smoothness, seem to outweight the disadvantages. Advantages are the points 3-7 below. -

3. Control of grid acceptability and grid quality (resolution), by manipulation of the given geometrical
shape of faces and for edges, and of the pcsition of vertices, has been used several times, and turned
out to he useful.

|




4, Similarly, control of grid acceptability and quality by the weight functions in the elliptic
siid-generation procedu.e produces usually acccptable grid-point distributions.

5. The default rules for the definition of the geometric shapes of block edges and of block faces
(section 3, points 10.b, 10.c), which do not require user-input of geometric data, are Iz practice
often applicable, and thus very useful.

6. In most faces and in most blocks, bi- and trilinear transfinite interpolation produces acceptable
grids of good quality, when the grid points in edges have been correctly distributed by an elliptic
method. Here, most faces and blocks means of the order of 807 of the faces and all blocks. This
procedure is succesful when independent variables in the function prescriptions for edges, faces, and
blocks are correctly tuned to each other. Grid tuning with the comparitively expensive eliiptic
methods can thus be avoided in the vast majority of blocks and faces.

7. The 'locality' property (section 3, point 10.g) of the control mechanisms for the constrcution of
acceptable grids of sufficient quality turned out to be very useful, when grids had only locally to be
improved.

The grid generation procedure needs also improvement.

1. Definition, modification, and other manipulations of the topology and geometry data of a
block-decomposition of a flow domain around a complex 3D aerodynamic configuration turned out to
require much manpower, and to contribute significantly to long turnaround times for grid generation.
The software for topology definition (PATRAN) and for subsequent geometry definition (SIGMA, AEROLIS,
CATIA, etc.) can be used. However, PATRAN cannot handle aerodynamic surfaces with sufficient accuracy,
and slight topology changes produce large changes in topology data. The other geometry software
packages were found to have a high user threshold for CFD specialists. It was concluded that much
shorter turnaround times for the construction of block decompositions will require speclal software
for the integrated definition of topology and aerodynamic geometry data, to be handled by CFD
specialists.

2. The requirement of face-to-face packing of blocks leads, in most applications with complicated
aerodynamic configurations, to a large number of blocks with relatively small block volumes. For a
complete aircraft, the number of blocks is of the order of 500 - 1000, The manipulation of this amount
of blocks (and of a similar amount of vertices, edges, and faces) during block decomposition and grid
generation is cumbersome. Further, because block volumes are relatively small, even on fine grids the
total number of grid points per block becomes alsc relatively low (say, of the order of 20%), so that
vector operations (usually, only inner loops of nested loops are auto-vectorized) become slower than
desired. Hence, it is desired to enlarge block volumes, to enhance vector performance in the flow
simulator, and to reduce at the same time the total number of blocks, faces, edges, and vertices, to
reduce the administrative tasks of a grid designer.

3. Further it was found that the mechandsms for the control over the quality of grids requires
considerable improvement, to eliminate accuracy and approximation-efficiency problems with
flow-simulation results. To explain how this arises, observe first that the requirements of
face-to-face patching of blocks and of continuity of grid lines has as a consequence that, in complex
3D block decompositions, many grid lines are continuous through chains of blocks from e.g. flow
boundary to flow boundary. Of course, grid-cell volumes are chosen small in blocks with high flow
gradients (near wing leading and trailing edges, inlet lips, etc.), which leads to high grid-point
densities in blocks covering such regions. But because grid lines are continuous over block faces,
this high density is also propagated into other blocks where this may not be required, e.g. outer-flow
regions near infinity. In order to prevent too dense grids in such outer blocks, designers make
compromises by accepting, in blocks which should have dense grids, grids which are locally too coarse,
so that here flow-simulation results are locally to inaccurate. Hence, there is a need for grid
refinement/coarsening over block faces, like i1llustrated in figure 4.2, where grid lines can terminate
on block faces, so that they do not propagate into blocks where a smaller grid-point density is
sufficient for good grid quality.

4. When the grid-point densities in different blocks are strongly related to each other due to a
continuity requirement of grid lines at block faces, grid designers spend (too) much manhour time in
manually optimizing stretch-factor behaviour and other second-order behaviour of the grid-point
distributions, to prevent large variations in grid-point densities over a block volume.

5. Sometimes grid folding is encountered. Efficient repair by an ad hoc procedure is usually possible, if
the folded region can be quickly detected and visual inspection means are available for analysis.

6. The coupling between the grid generator code and the visualisation code can be made loose (two
differeut computer codes in one job-control loop, coupled by files). This situation is excellent from
the point of view of task decomposition, but a more tight couplirg is necesszcy from the point of view
of the man at the workstation/terminal,

5. Improvements

5.1 Introduction

The block-decomposition/grid-generation procedures, and the corresponding procedures for the
manipulation of surfaces on aerodynamic configurations and in the flow, are given the desired properties
by introducing new data structures for multiblock grids, and new algorithms for block decomposition and
grid generation. The new technical concepts are sketched in sections 5.2 - 5.6 below.

5.2 Elementary and compound blocks, faces, and edges

When blocks are packed block-face to block-face, a collection of blocks, faces, and edges is
obtained. These blocks, faces and edges may be called elementary, to distinquish them from another kind
of blocks, faces, and edges to be introduced below. Such collections of elementary blocks can be
described both topologically and geometrically by simple mathematical constructions, which can easily be
mapped in computer codes. Exactly this simple structuring is also the reason why elementary-block
subdivisions are insufficiently flexible for control of the accuracy of flow-solver results, and why
vector lengths are relatively short. Is is thus necessary to generalize, to eliminate these problems.




Y-6

A mathematically well-structured approach is obtained when unions of elementary blocks, faces, or
edges are allowed to be combined into a new so-called compound block, face, or edge. Moreover, the
concepts of an elementary block, face, and edge have to be generalized gomewhat. The definitions of these
entities are now as follows.

a. An elementary edge 1s a curve segment in space, with the topology of the unit interval, with two
vertex points as its end points.

b. A compound edge is the union of two (elementary and/or compound) edges, joined together at a common
interior vertex point.

¢. An elementary face is a surface segment in space, with the topology of the unit square, with four
(elementary and/or compound) edges as its boundary.

d. A compound face is the union of two (elementary and/or compound) faces, joined together at a common
interior (elementary or compound) edge. This union should also have the topology of the unit square,
and have four edges. '

e. An elementary block i1s a volume segment in space, with the topology of the unit cube, and with six
(elementary and/or compound) faces as its boundary.

f. A compound block is the union of two (elementary and/or compound) blocks, joined together at a common
interior (elementary or compound) face. This union should also have the topology of the unit cube, and
have six faces.

Conceptually, the generalisation is nothing else than that each union of elementary blocks, having
also the topology of a unit cube, 1s accepted as a new compound block. Further, each union of elementary
faces having the topology of a unit square, is also accepted as a new compound face, and each union of
edges having the topology of the unit interval is also accepted as a new compound edge.

It will be evident from the definitions that each compound entity (block, face, edge) may be
decomposed into a union of elementary corresponding entities via binary-tree data structures, with
elementary entities at the leaves, and compound entities at the nodes.

Using compound entities, it is possible to greatly reduce the chaining effects in elementary-block
decompositions, because a block face may now terminate in an interior edge of a compound face of an
adjacent block, without propagating into that block due to a requirement of a block-face to block-face
packing. This feature allows grid designers considerably better control over the geometrical modeling of
blocks and the positioning of blocka with respect to each other.

5.3 Grid refinement per block and per computational~coordinate direction

Compound blocks are necessary but not sufficlent to realise sufficient control of grid point
densities. In addition it is necessary to allow that, in each block, the grid point density can be
defined practically independently from that in adjacent blocks.

This requirement raises the question how the grids and the flow states in two different adjacent
blocks should be related to each other at a common face. To analyse this question, two extreme cases are
considered first.

a. When each grid line 1s continuous from one block over the common face into the other block, the data
structures for grid geometry and flow states in each of the two blocks are closely related to each
other. They can in fact be related to each other in computational space using topology data, because
the grid-point multi~indices in the two blocks can be mapped onto each other by a linear relatiom.
However, the advantage of the simplicity of this wmapping 1s at the same time a constraining factor,
because, near the common face, the grid-point densities in the two blocks are about equal due to this
linear mapping.

b. When the grids in the two blocks at each side of the common face would be completely unrelated,
grid-point multi-indices of the two grids must be related to each other in physical space via the
geometrical position of grid points in the common face. This involves complex search procedures, and
produces a, in general very nonlinear, relation between the grid-point indices of the two blocks. The
advantage of complete freedom in defining grid-point density in each block is thus obtained at the
cost of this nonlinear multi-index relation.

A reasonable compromise between these two unattractive alternatives is to keep the property that
¢rid-point multi-indices of the two grids are mapped onto each other by a linear relation, but to allow
grid-point densities over faces to increase or decrease, by applying grid coarsening/refinement over
block faces. See figure 4.2 for an illustration. The coarsening/refinement is allowed independently in
each of the three computational directions. Of coarse this presumes that in the solver special
block-coupling algorithms are available, that are conservative, and in general second-order accurate.

5.4 Numerical aerodynamic geometry modeling

As discussed in section 4, it became recently clear that numerical aerodynamic geometry modeling in
the block-decomposition/grid-generator codes 1s required because, for CFD specialists, the user threshold
of current geometry software packages is very high, and the required functionality for Euler and NaStokes
flow calculations 1s not available (e.g. double curved surfaces in the flow).

Face surfaces are defined by control-point distributions, arranged in 2D arrays, which are
interpolated to a unit-normal continuous face surface, by patching together transfinite bicubic Hermite
polynomials, one for each patch spanned by four control points.

It 1s important to observe that a unit-normal continuous surface may be represented by an
interpolating function with weaker continuity than Cl-continuity. This fact may be exploited to optimize
the qualitative behaviour of the curvature of the surface represented by the Hermite polynomials. This
optimalization is aerodynamically useful.

This approach, whereby a face surface is represented by patched bicubic transfinite Hermite
polynomials interpolating a 2D array of face-surface control points, way be compared to approaches, in
wvhich an underlying analytic surface definition from a geometry software package is used, which must then
not be compromised during multiblock grid generation., We consider our approach as more efficient and
flexible because, in the flow solver, aerodynamic configuration surfaces are approximated anyhow by grid
point distributions. It has then no sense to stick to a unique aerodynamic-surface definition in the
block-decomposition/grid-generation process when this is cumbersome, provided the CFD gpecialist is
offered full information about and control over the geometrical approximations he is making during the
manipulation of aerodynamic surfaces.
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Another important topic concerning aerodynamic geometry modeling is that of natural (i.e. physically
relevant) independent variables (parameters) in the 3D vector functions defining the geometrical shape of
an edge curve or of a face surface.

It was found that, during grid generation in a face, usually good grids could be obtained, using
only transfinite bilinear interpolation, if the grid-point distribution in each of the four edge curves
of the faces was appropriately defined. In each of the four edge curves, the corresponding distribution
of the independent variables in the 3D vector functions for the face geometry are then also known. A grid
may then be defined in two steps. First, in the face interior, a uniform distribution of the two
independent variables between their edge values is defined using bilinear transfinite interpolation in
the independent variables on the four edges. Next, each pair of independent-variables values of this
distribution is substituted in the 3D vector function for the face geometry, to produce a grid point in
space on the face.

This procedure fails when the independent variables in for example two opposite edges are
differently defined, for example, arc length in one edge, and control-point index in the other edge with
a very non~uniform control-point distribution. In such a case, the above procedure may produce unexpected
distributions of grid points in the face.

In order to prevent such unexpected behaviour, it is necessary to use geometrically meaningful
independent variables. They are called here natural variables (or parameters). Arc lengths along
parameter lines are expected to be a good choice in general, but other choices may occasionally be also
useful.

The use of natural parameters and multi-linear transfinite grid generation for the final generation
of complete multiblock grids is now under development.

5.5 Control of grid quality and acceptability

It may be expected that CFD specialists will have considerably better options for controlling the
quality and acceptability of a multiblock grid, when the following technical means are available.

- Both, compound and elementary faces and edges available for use. (Compound blocks are not needed.) If
desired, enclose in special blocks regions requiring extra dense grids, or allowing coarser grids. Use
of unit-normal continuous surfaces defined by patches of bicubic transfinite Hermite polynomials, to
position complicated block faces in the flow.

~ Grid-point density defined per blouck, under the constraint that computational multi-indices of grid
points in each common face of two blocks can be mapped onto each other by a linear transformation.
Grid refinement/coarsening over block faces allowed (grid-point density control here).

- Grid tuning has the 'locality' property discussed above. Grid tuning, using in subsequently each edge,
each face, and each block, the chain of mappings:

: computational coordinate(s) in edge, face, or block =
+ weight function(s) for grid tuning (xrid smoothness control here):
: natural independent variable(s) in edge, face or block +
+ 3D vector function defining the geometrical shape of the edge, face, or block:
: grid-line coordinate(s) in edge, face, or block.
Bi- and trilinear transfinite interpolation is used to define weight functions in faces and in blocks
from those in the edges and faces, respectively,

5.6 Hyperblocks

A hyperblock is a collection of blocks, arranged to form a desired topological structure, and having
a rough geometrical shape that may be defined in detail as desired. Examples are the Cartesian,
Cylindrical, and Spherical hyperblock structures of figure 5.1.

Hyperblocks may become useful to speed up the interactive block-decomposition process, by inserting
automatically around a given aerodynamic configuration part a large number of blocks, faces, edges, and
vertices in one hyperblock with one hyperblock command. It remains to be investigated whether this
feature is really needed in practice, because the use of compound faces and edges may in practice
eliminate the need for hyperblocks, in particular when graphical workstations are fast enough.

6. Concluding discussion

The scientific technical issues to be reported here are what may be learned from past experiences,
and to conclude from them how to proceed in near future with the grid-generation discipline.

Multiblock grids can be used with success for numerical flow simulations around complex aerodvnamic
configurations (section 4). This may be achieved by:

. 1integrating development work in grid generation with corresponding work in flow-solver development
(section 2.1, 2.3-2.5),

. developing new mathematical theory for the description and construction of the topology, the geometry,
and the grid-point distributions for numerical multiblock-flow simulation, and by

. developing new corresponding block-coupling algorithms in the flow solver [7,8].

In section 5, five technical concepts for the improvement of the multiblock grid generation
procedure are proposed. They may in particular be used to improve the accuracy of the flow simulation
results and their stable computation (sections 4, 2.1), and to reduce manhour investments in the
construction of multiblock grids. These five concepts are:

1. compound blocks, faces, and edges (section 5.2),

2. grid refinement per block (section 5.3),

3. new aerodynamic-geometry modeling techniques (section 5.4),

4. control of grid quality and acceptability with various new concepts (section 5.5), and
5. hyperblocks (section 5.6).

It may be expected that the incorporation of these concepts in the multiblock flow simulator codes
will greatly improve the system in the desired directions. Because the concepts are introduced now, the
firm proof of this expectation cannot yet be presented here.
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GRID PATCHING APPROACHES FOR COMPLEX THREE~-DIMENSIONAL CONFIGURATIONS

W.Schwarz', G.Hartmann'®, M.A.Schmatz',
K.M.Wanie', M.Pfitzner"*
Messerschmitt-B6lkow-Blohm GmbH
Postfach 80 11 60
D-8000 Minchen 80
Federal Republic of Germany

SUMMARY

Three examples of different grid generation procedures are reported in this paper. The
first one is based on a single-block approach but nevertheless it is able to handle very
complex aircraft configuratons and requires only a minimum of user input. This system was
the base for the development of the following patched grid method. The next example shows
the application of the patched grid technique for the zonal solution of Euler, boundary-
-layer and Navier-Stokes equations and demonstrates the ability of this method to achieve
the necessary local grid refinement for viscous calculations. Finally an application of a
patched grid method for an Euler code with a shock fitting approach for supersonic cal-
culations is presented. Here the grid near the body surface is fixed whilst the grid in
the outer region is moved so that it can be adapted to the location of the bow shock.

1. INTRODUCTION

Grids which are wused for Euler calculations are usually continuous over the whole
computational domain because this is the most simple way for the implementation of the
flow solver. For the solution of the Navier-Stokes equations however, it may be impos-
sible to generate a suitable continuous grid, at least for more complex configurations.
In this case the use of patched grids is a very attractive way to solve the problem. But
this approach is not limited to Navier-Stokes solutions because the use of patched grids
offers the possibility to introduce local grid refinement and/or local grid adaption
easily.

For the patched grid approach the compuctational domain is divided into different regions.
In each region the arid may be adapted to the special requirements of the flow solver.
&

These grids are f{inaily patched together to cover the whole flowfield. This may be done
in two different ways. In the blocked approach the grids fit together so that there is no

overlapping. Another method is to overlay the different grids so that the grid lines are
teally nverlapping. This grid is much simpler tc generate but problems in the flow solver
may arise because of the necessary interpolation work and because a conservative dis-
cretization of the gcverning equations is very difficult. Applications of both methods
are included in this report.

The paper starts with a short discussion of the advantages of CAD systems for surface
grid generation. This is followed by an overview of the basic grid generation algorithms
that are used. The major part is the description of various grid generation methods. This
inzludes grids for complex configurations suitable for Euler solutions, patched grids for
zonal solutions (a coupling of Euler/boundary-layer- Navier-Stokes equations) and adaptive
meshes for a shock fitting Euler code.

2. SURFACE GRID GENERATION

The surface geometry of new aerodynamic configurations 1is usually developed nowadays
using CAD/CAM systems (Computer Aided Design/Computer Aided Manufacturing), in which the
geometty is represented by mathematical functions. The CAM part of them allows direct
programing of NC-machines (Numerically Controlled) and thus represents the connecting
link between construction and production. Since the constructed geometry is represented
best in the CAD system it is the natural way to use CAD also for the generation of sur-
face grids required for numerical simulations and to link construction and numerical
simulation in this way. In contrast to the usual proceeding, where the geometry is trans-
fered to the grid generation algorithm by means of point coordinates which are to be
interpolated, a deformation of the geometry is completely avoided. Due to the interactive
working technique and the plotting devices inherent in CAD systems, grid generation can
be done ve.y efficiently. Only few additional features compared to standard CAD systems
are to be provided, which are known mainly from conventional grid generation, like
input/output routines, routines to compute point distributions along lines etc.

In the following the surface grid generation for a hypersonic forebody configuration
! using the CAD system CATIA will be describc? exemplary. The lines i=const. (i-lines) are
{ situated in cross section planes. Starting point for the surface grid generation is the
CAD surface model (Fig. 2.la). The first step is to define the cross section planes for
the i-lines. For this purpose a suited point di,t.ibution along, say, the x-axis 1is

.
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created and planes normal to the x-axis are constructed at these points. These planes are
intersected with the surface geometry to create the i-lines of the surface grid (Fig.
2.1b). sSince the surface usually is represented in the CAD system by various overlapping
elements, the 1i-curves are obtained as overlapping elements, too, which have to be
trimmed and concatenated to get a single, unique curve. The generation is finished with
the creation of suited point distributions along the i-lines (Fig. 2.1c).

The described process, of course, is just an example. The inherent flexibility of CAD
systems allows a generation very closely adapted to the various problems. Furthermore the
application of CAD is not limited to surface grid generation. Also two-dimensional space
grids can be build up very easy. The probably more interesting further application, how-
ever, is the construction of outer boundary conditions for the two- and three-dimensional
elliptic grid generation procedures described in the following chapters.

Once the surface grid is generated its quality should be assessed by analysing the metric
properties (1], which are requiried tc be sufficiently smooth. Figure 2.1d shows as an
example the distribution of the metric tensor component a,,, a further analysis can be
found in [(2].

3. BASIC GRID GENERATION SYSTEMS

The grid generation systems used for the cases described in this paper are all based on
elliptic systems, namely on some formulation of Poisson’s equation. The reasons for this
are the well known advantages of elliptic partial differential systems (discussed for
example in [3]), in particular the extremum principles to guarantee a non-overlapping
grid, the smoothness of the resulting grid and the possibility to specify the points on
the entire boundary.

3.1 ORIGINAL POISSON SYSTEM
The most commonly used form of a general Poisson-type grid generation system is
£, + &, + &, =P,
vy * M, = Q (3.1)

Lo + &, *+ &, = R.

Yy

Grid control is exercised via the so called "control functions"™ P, Q, R. For the examples

shown in this paper, thets functions where wused to attract grid lines towards other
specified 1lines or points like described in [4]). The range and intensity of this attrac-
tion may be chosen. The attraction in §-direction 1is controlled by the P function which
takes the following form in 2D:

attraction towards a line £=£i=const.:

) B IEi-&I]

P = A, sign(&, -f) exp|- —, (3.2)
i i J

B.
1

attraction towards a point (&i,ni):

' {tg-02 + (n-m?
P o= A, 51gn(Ei—£) exp |- B, , (3.3)

where the subscript i denotes a particular line i=const., A, is the intensity of the
attraction and B, is a decay factor whirh limits the range of the attraction effect.

The Q function works in a similar form for the attraction in n-direction with & and n
interchangsd. Egq. (3.1) has to be transformed in the computational domain and the
resulting quasi-linear equation is solved by a Gauss-Seidel iteration scheme. An appli-
cation of this type of grid generation system is shown 1in Chapter 6 for the HERMES
reentry vehicle.

3.2 BIHARMONIC SYSTEM

This grid generation method is also based on Poisson’s equation, but this time the
formulation in computational space as explained in {5]) is used:

Xgg + Xpn + X = P(E,n,0),
Yee + Yon * Yoo = Q(E,n,Q), (3.4)
Zgg * 2y, * 2., = R(EN, Q).

Therefore no transformation between physical and computational space is necessary.The

values of the control functions P, Q, R are determined by the solution of Laplace’'s
equation to assure a smooth distribution of the source terms over the whole computational
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domain:

Py, + P, + P =0,
Qee + Quy + Q¢ = 0, (3.5)
Rgy + Ry, + Ry = 0.

Together, these two sets of equations form the biharmonic equation ¥4x* = 0. Due to the

stability problems of central difference approximations of higher-order derivatives,
this fourth-order equation is implemented as a system of the two second-order equations
(3.4) and (3.5). The discretization of the derivatives by centered differences leads to
linear algebraic equations in physical space which can be rearranged easily to yield the
final equations for the grid point coordinates. For the numerical solution of these
equations a simple Gauss-Seidel iteration scheme is used.

The boundary conditions for the coordinates may be of Neumann or Dirichlet type. The
boundary conditions for the control functions P, Q, R are calculated wusing the current
coordinates of the points near the boundaries according to Eg. {3.4). As the location of
these points changes during the iteration procedure, the values of the control functions
at the boundaries do not remain constant but are updated continuously.

There are different ways to calculate the boundary values of the control fuactions, de-
pending on the type of boundary. To obtain a concentration of grid lines towards inner
boundaries (i.e. surface of the configuration), one or several grid lines away from the
surface must be generated by some algebraic grid generation technique. At the last grid
surface determined in this manner the boundary values of the control functions are deter-
mined using the coordinates of the surrounding prints as indicated in fFigure 3.la. At the
outer boundaries where freestream flow conditions are imposed, the values of the control
functions are put to zero forcing a raplace type grid in this region (Fig. 3.1lb). In a
multi-block approach, the boundarv kecween two blocks is treated with a similar technique
as the inner boundaries. The cnatrol functions at the block boundary are determined from
the coordinates of the surr.unding points in both blocks as show in Figure 3.lc.

The next two chapters will show some applications of this grid generation system, hoth
for single-blork grids and for pa*ched grids using a multi-block apptoach.

4. SINGLE-BLOCK GRID GENERATION FOR COMPLEX GEOMETRIES
4.1 GENERAL DESCRIPTION

The application of the biharmonic grid generation system will be demonstrated first for
single block grids, as this 1is the basic grid generation approach. To resolve complex
geometries properly, a very flexible H-type topology with several interior branch cuts
is wused. This leads to a number of singular lines and points on the surface called
fictitious <corners. So in this concept not the flowfield but the configuration has to be
divided into blocks as it is shown in Fiqgure 4.2b for the surface grid of a fighter air-
craft. The whole computational domain is a single block and the volumes lying inside the
configuration have to be excluded from the calculation.

The grid generator accepts any number and arrangement of configuration blocks. As input
the program needs the surfaces of these blocks. So the first step is the division of the
whole surface into sub-surfaces which are limited by fictitious corner lines. Then a
suitable point distribution on these surfaces is generated as described in Chapter 2. The
points on these surfaces must already have the correct global coordinates (&,n,) and
special care has to be taken ac. the interfaces between two surfaces to assure continuity
of grid lines. Starting with this input the grid generator recognizes the dummy volumes
inside the confiquration and marks them witn a togical flag.

As explained inm Chapter 3.2, the first coordinate surface off the boundary has to be
calculated by some algebraic method to achieve an attraction of grid lines towards that
boundary. 1In this case this attraction is done in quasi-radial direction by specifying a
constant aspect ratio (a/b) like shown in Fiqure 4.1. For ¢&=constant boundary surfaces
this attraction is done along {-coordinate lines and in an analogous form for the other
coordinate directions. In principle it is possible to specifiy different aspect ratios
for different surfaces or to specify the distance of the first coordinate surface from
the body instead of the aspect ratio.

In the plane of symmetry, the grid may be generated with a 2D version of the grid ge-
neration algorithm or by using symmetry boundary conditions for Egs. (3.4) and (3.5). In
the normal case the farfield boundaries form a rectangular box and a perpendicular inter-
section of grid lines is imposed. It is also possible to rotate any of its faces so that
a truncated pyramid is formed (Fig. 4.5b).

The advantage of this single-block grid generation method is that once you have a sui-
table surface grid with properly defined block boundaries, it is very simple to generate
the gqrid for the flowfield because only few parameters are necessary, namely the number
of grid lines and the attraction parameter(s). The disadvantage is that you have only
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limited grid control possibilities. Therefore the resulting grids are in general useful
only for Euler calculations. The Euler method and some applications are described in
[6,7]).

4.2 APPLICATIONS

The grid for an advanced fighter aircraft demonstrates that it is possible to generate
grids for very complex geometries with this single-block approach. The main features of
this configuration (see Fig. 4.2a) are a fuselage with belly intake, a cranked delta
wing, canard and two fins. Figure 4.2b shows the surface grid in computational space and
illustrates the complicated block structure that is necessary to resolve this configura-
tion properly. For the generation of the volume grid (Fig. 4.3) only one attraction para-
meter was used for the whole mesh. Details of the grid generation procedure are described
in [8]. The results ¢f the Euler calculations done on this mesh are reported in [9].

Another example is the grid for a wing tunnel model which was used for wave drag investi-
gations. The model has a fuselage with a delta wing and plyons with external stores may
be added. Fiqure 1.4 iz tuken from [10] and shows the surface grid and Fiqure 4.5 shows
sowe views of the volume grid. As the calculations had to be done only for supersonic
test cases, the outer boundaries were adjusted to the presumed location of the bow shock
(Fig. 4.5b) in order to minimize the total number of grid points.

5. PATCHED GRIDS FOR ZONAL NAVIER-STOKES APPLICATIONS
5.1 ZONAL SOLUTION METHOD

Together with the development of large vector computers it is possible now to compute the
viscous flow about realistic configurations. At MBB the Navier-Stokes solver NSFLEX was
developed and applied successfully for a wide range of Mach numbers [11,12]. However,
systematic application of Navier-Stokes methods in aerodynamic design is 1limited up to
now by high computer costs. To accelerate the Navier-Stokes method the so-called CCPNS
(close coupling procedure for the Navier-Stokes equations) method was designed, see for
example {13,14].

The principle is to cover the flowfield with a uniform Navier-Stokes grid. In regions of
weak viscous-~inviscid interaction the fine grid in the vicinity of the wall is discarted
to get an Euler grid there, which is a subset of tiie governing Navier-Stokes grid. In
these weak interaction regions an equivalent inviscid flow 1is calculated, i.e. a combi-
nation of an Euler and a boundary-layer solution. The boundary-layer calculation in these
regions delivers the equivalent inviscid source distribution for the inviscid solution as

well as the flow profiles for the coupling of the equivalent inviscid region and the re-
gions of strong viscous interaction where the Navier-Stokes equations are solved. Strong
viscous interaction occurs where shocks or separation are located. There the boundary-
layer equations are no longer valid. 1In Figure 5.1 the different zones can be seen for
the wing flow application presented here.

To study the effect of using patched grids, the method was coded and extensively tested
for Euler flows [13]). There it could be shown that the zonal Euler solution and the
global Euler one give the same results even for very different cell sizes at the arti-
ficial boundaries if third order accurate fluxes are calculated at these boundaries, too,
as in the complete flow field [13].

The present zonal method was applied to several two and three-dimensional flow problems.
In comparison with a full Navier-Stokes solution, the CCPNS method requires about half
the computer time and yields similar results. Note that the code is highly vectorized.
The MBB boundary-layer code SOBOL ([(1,15]), which solves the second-order boundary-layer
equations is incorporated in the method as a subroutine. The CCPNS code is designed to
find the different zones of flow modelling automatically and to rezone them if this is
indicated by the boundary-layer method. To get a good vector performance the different
zones are chained to one-dimensional arrays plane by plane. .

Due to the flow and the grid topology the flowfield is divided in four different zones
(Fig. 5.2). In blocks 1,3 and 4 the Navier-Stokes equations are employed and alsc a
Navier-Stokes grid is used. In block 2 the Euler together with the bsaundary-layer egqua-
tions are solved. An equivalent inviscid flow is calculated there on a much coarser grid.
At the artifical boundaries coupling approaches are necessary at every time step. The
boundary-layer solution is recalculated after some time steps.

The surface grid together with the outer grid shell of the Navier-Stokes mesh is shown in
Pigure 5.3,

$.2 GRID GENERATION FOR A WING PLOW SINUALTION

From a given surface distribution a C-O-type grid is generated using local monoclinic co-
ordinates at the wall whereever possible, since the boundary-layer theory is restricted
to such coordinates. Note that the boundary-layer method works on the same surface grid
as the Euler-Navier-Stokes method does and that for a second-order boundary-layer solu-
tion an inviscid flow distribution is required. With this surface normal grid an alge-
braic turbulence model, like the one of Baldwin and Lomax, is easily and accurately to
apply. Exporential stretching is used in these algebraic subblocks, that means where vis-
cous effects are predominant. The height of the first cell is Jesigned such that the
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dimensionless wall coordinate y* will reach about 2 to 4 in the flow solution to resolve
the viscous sublayer of the overall turbulent flow with at least one cell. After a NSFLEX
solution y* is checked for accuracy reasons.

The inviscid flow grid is found as a subset of the viscous one by simply omitting some
cells. In Figure 5.4 a detail of a n=const. plane shows the Euler grid in comparison with
the Navier-Stokes grid, which differs just near the body. Since the grid is perpendicular
to the wall and since the Euler mesh is a subset of the Navier-Stokes mesh only little
interpolation work is necessary for the CCPNS process.

The elliptic grid generation procedure described in Chap. 3.2 follows algebraic mesh
generation to cover easily the outer region with mesh points. Utilized is the biharmonic
system, Egs. (3.4),(3.5). Dirichlet boundary conditions are employed at all boundaries of
the computational domain. This way the grid points are attracted towards the algebraic
mesh. To vectorize the grid generation method red-black Gauss-Seidel iteration is used
like in the Navier-Stokes method.

The zurface grid fc- a2 gereric *franspert aircraft wing is shown iu rigure 5.3. io geL an
exponentially stretched point distribution in the farfield the whole grid is redistri-
buted along §,n=const lines, the lines starting from the surface, using the curves of the
algebraic and the elliptic subblocks as interpolation paths. The main features of the
C-O-type mesh wused can be seen in Figure 5.5, where the symmetry plane, the outer
boundary and the plane where the upper grid joins the lower one is plotted.

The computational domain is devided up into four different blocks (Fig. 5.2). Block 2 is
the equivalent inviscid one, the Navier-Stokes equations are solved only on blocks 1,3
and 4. Since the zonal boundaries are not known a priori it is necessary to allow them to
float during the convergence process. This rezoning capacity is achieved by chaining
planewise the solution vector, the geometry and what else is needed in the different
subroutines in one-dimensional arrays. Then the answer is calculated again on one-di-
mensional array and restored in the original three-dimensional arrays. Thereby only one-
dimensional arrays have to be added to the code in comparison to the mono-block NSFLEX
code. For details see [16].

To demonstrate that both the patched grids and the zonal solution procedure give reasoan

able results here one application out of (16] 1is reported. The freestreax condition is:
M,=<0.78 and «=2.2 degrees, Re=7,000,000. The governing Navier-Stokes grid consists of
156,000 gqrid points which is a rather crude grid. In chordwise direction 100 cells are
used, in spanwise direction 40 cells and normal to the wing 39 cells. For the inviscid
part of the grid 10 cells from the Navier-Stokes grid are omitted, see Figure 5.4. This
means that the Euler grid consists of 116,000 cells in total. The resolution at the wall

is rather fine for inviscid calculations. The height of the first Euler cell is designed
to be 0.02 percent of the mean chord length. The boundary layer is calculated in the
tregion of the eqguivalent inviscid flow (block 2 in Fig. 5.2) with 50 points normal to the
wall. A much higher resolution :s achieved in comparison with a WNavier-Stokes solution
especially in regions where the boundary layer is thin since the boundary-layer mesh is
adapted to the boundary-layer thickness.

In Figqgure 5.6 the isobars on the lower and on the upper side of the wing demonstrate
perfect smoothness across the zonal boundaries. The same behaviour can be found in the
skin friction and the pressure distribution at all spanwise stations [16). Compared to a
global Navier-Stokes solution the results are nearly the same whilst the computer time is
reduced and the accuracy in the zone of the boundary layer is enforced.

With the zonal method described above all tools are available and verified also for the
use of embedded meshes both for Euler and /or for Navier-Stokes applications. In the
future this will be done to resclve special features of hypersonic flow fields around
complex configurations in more detail.

6. PATCHED GRID FOR THE HERMES REENTRY VEHICLE

A  computational grid has to be generated for the HERMES reentry body, which is suitable
for the calculation of the flow field using a shock-fitting-EULER-code {finite differen-
ces), that means good continuity for the metric derivatives and simple and fast adapta-
tion to the location of the bow shock is needed, because the grid has to be adapted after
every timestep {17,18). An essential point for this is a fixed surface grid on the body.
For a good resolution of the body in a flow calculation it is useful to attract points at
regions of large curvature, and coarsen the grid spacing in areas of small curvature,
that is to cluster the grid points. As measure for the clustering the locai radius of
curvature is used (Fig. 6.1), which is smoothed (Fig. 6.2,6.3), because clustering should
occur in the whole neighbourhood of maxima of curvature. Also a constant level is added,
so that the rest of the curve is not too much depleted from grid points (Fig. 6.4). The
coordinate points given in spanwise cross-sections of the body contour are catched with
parametric splines for interpolation, The grid points on the cross-sectional curves are
then chosen such that they divide the area under the clustering function into egqual
increments (Fig. 6.5). This procedure results in a special point distribution for the
given ribsections. Mow the coordinate points of corresponding intervals are connected by
splines, resulting in grid lines along the body. For the final surface grid (Fig. 6.6)
these grid lines are intersected with the cones of the special coordinate system for the
shock-fitting-algorithm, where the distribution of aperture angles w are given.
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For the generation of the space grid the body is divided into two areas with an over-
' lapping part, to make interpolation of flow variables possible for the calculation. A

one-block grid with straight lines to the fitted bow shock and body adjusted angles w and
¢ (Fig. 6.7) is wused for the front part. The distribution of points on the lines is
achieved by an exponential function, to enable condensed grid lines at the body
(Fig. 6.8).

Such a simple structure of the net is not possible for the rear part (winglet section).
The region between body and fitted bow shock is divided into two areas (Fig. 6.9). With
the angle 8=70° of the tangent a footline on the wingtip is defined (Fig. 6.10), also a
straight 1line in the x-z-plane of symmetry with the angle €=45° 1is chosen (Fig. 6.11).
The boundary curve between the two blocks in the ribsections are chosen as half ellipses,
which intersects the two fixed lines. The point distribution on the boundary curves
(Fig. 6.12) are then done with the weighting function based on the 1local radius of
curvature, like described above.

Since block 2 has a rather complicated boundary and is fixed in time, in this bhlock the
grid is generated numerically by an elliptic solver {3,4,19,20]. This 2-D grid gemeration
code [21] distributes grid points by solving Poisson’s equation (Chapter 3.1) using
Gauss-Seidel overrelaxation. The source tetms in the Poisson system admit clustering of
grid points along specified lines or points. The strength and range of source terms can
also be varied by the user (Eq. 3.2 and 3.3). The grid points on all boundary lines of
the domain have to be specified and are (except on symmetry boundaries) not moved by the
solver. An attraction line has been placed on the upper wing surface cross-section curve
and attraction points are set at the wing root and at the junction point between the wing
and the winglet. The strength of the source terms are adjusted such that the space grid
appears compatible with the given boundary point distribution in the first grid plane.
The source terms are then held constant in the grid generation process of all other grid
planes to get a smooth grid in the 2z-direction. Fig. 6.12 shows the computational grids
in two cross-sections. It is nearly body orthogonal and smooth. The resolution of this
type of grid is better than the one block grid especially near the wing-body junction.

Due to the time-dependent bow shock boundary, which moves during the relaxation in its
stationary location, the outer grid block is time-dependent, in contrast to the inner
block, which is fixed. An algebraic grid generation is the most efficient strategy for a
time-dependent grid ([22,23,24)]). The simple geometrical form of block 1 allows to choose
straight lines from the inner boundary to the bow shock, in the same manner applied to
the forebody. The points along these straight grid lines are distributed with the same
exponential stretching function wused for the front region. To achieve grid lines as
smooth as possible across the block boundary, the angle ¢ of the grid lines has to be
matched to the angle distribution of the fixed grid 1in block 2. First a raw angle

distribution 1s calculated. At the block boundary the angle is taken over as linear
extrapolation of the grid lines in block 2. At the body contour of the lower wing surface
the angle ¢ is calculated from the body normal projected onto the grid plane (Fig. 6.14).
This distribution 1is smoothed by an IMSL spline, so that monotonous increasing is
achieved (Fig. 6.15). At last Fig. 6.16 shows a whole two-block grid plane in a
cross-section.

The flow field computation runs in two parts, first the forebody with the one-block
structure 1is calculated. Then the flow variables in the overlapping section are inter-
polated from the one-block grid into the two-block grid and taken as boundary condition
for the winglet region (Fig. 6.17). After convergence is reached the two datasets are
connected for analysis. Fig. 6.18 shows the lines of constant Mach number on the surface
of the body. In spite of the patched grid the solution shows good continuity at the
trancition between the different grids, where a better resolution in the section with
two-block structure is achieved.

7. CONCLUSIONS

Although the described single-block grid generation system is acceptable for a wide range
of Euler applications, its strong smoothing tendencies and limited grid control possibi-
lities make it unsuitable for the generation of Navier-Stokes type grids. This disadvan-
tage could be overcome by the introduction of an algebraic sub-grid which provides a
resolution which is sufficently fine for calculations with viscous methods.

An important fact is, that the flow solvers have no problems in handling the boundaries
between two different grids. The computed results show no jumps in the flow quantities
across the boundaries. Although the patched grid methods shown here have been applied
only to specific configurations, the experiences are encouraging. The use of patched
grids is an interesting and relatively simple way to introduce local mesh refinement and
adaption. This is especially true for viscous flow calculations.

Future work will include the improvement of the single-block system so that it is
possible to have more influence on the grid. This includes a posterior grid optimization
and also some interactive grid generation strategies. An extension of the basic method to
aulti-block grids is also planned. The patched grid technique will be applied to other
configurations to develop a more general approach, in addition the grid for the HERMES
configuration will be adapted to the requirements of Navier-Stokes calculations.
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a) CAD surface model (schematically) b) creation of i=const. lines

c) final surface grid

d) quality assessment of surface grids

Fig. 2.1 Surface grid generation for a hypersonic forebody configuration
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Summary

The ability to calculate the flow around complex aircraft geometries is fundamentally
controlled by the ability to generate grids of suitable structure and quality around the
configurations of interest. This paper discusses the approach to Multiblock topology
specification and grid generation pursued within British Aerospace, targeted to make
Multiblock flow prediction methods available for use at all stages of the aerodynamic design
process. The grids and computed flow solutions for a number of complex geometries are
shown, and the capability for rapid systematic analysis of similar configuration geometries is
illustrated.

1. Introduction

The aerodynamic optimisation of an aircraft design requires the use of a multitude of computational and experimental
techniques. The design of civil aircraft in particular places stringent demands on the accuracy and generality of these
techniques. as fractional improvements in aerodynamic performance translate into significant fuel or payload operating
henefits. The most fuel efficient powerplants for these aircraft are getting ever larger with ultra-high bypass or unducted
fans offering significant performance benefits over conventional turbofans. These engines interact strongly with the
aerodynamics of the wing. and as a result. it is no longer possible to consider the optimisation of an aircraft configuration
design without conducting complete configuration flow simulations.

These requirements on accuracy of flow simulation and generality of application have governed our approach to
computational flow modelling for aircraft configurations. Encouraged by the pioneering work of the Aircraft Research
Association (ref. 1) in Multiblock grid generation, and work within British Aerospace (ref. 2) developing an efficient finite
volume Euler Multiblock flow solver. an opportunity was seen to develop computational techniques for the systematic
analysis of complete aircraft configurations : a method that would allow the optimisation of a wing design fully accounting
for engine installation interterence effects. Furthermore, the same general purpose Muttiblock codes could be used to
analyse a wide range of aircraft configurations.

The particular approach to Multiblock that we have pursued. considers muitipie blocks of curvilinear grid joined face-to
-face without overlap or holes to cover the entire flow domain. In this way, biocks of grid can be joined to form the optimum
grid structure for modelling the flow around component geometries : C-grids for wings. O-grids for bodies. etc. (fig. 1).

Muttiple blocks of curvilinear grid joined to form the
optimum grid structures for component geometries :

oo S
>F

C-grids for wings O-grids for bodies

Figure 1 : The Multiblock Concept
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No restriction is placed on the orientation of a block tace relative to its neighbouring face, as long as grid points correspond
one-to-one across the interface. At the boundary to the flow domain a single boundary condition type is imposed over the
block face. according to whether the face adjoins a solid surface, inflow or outfiow boundary.

it shouid be noted that compared with alternative multiple block techniques. for example those that allow mixed boundary
conditions over a biock face, the current method makes use of a larger number of smaller blocks. I'he logical connection
between these blocks is however very simpie, and this has allowed formulation and implementation of grid generation
algorithms that iteratively relax inter-block boundary grid points as the overall grid itself is generated. This ensures
smoothness of the grid across tie block boundaries, but more importantly from a practical viewpoint, it absolves the user
from having to specify the shape of the boundaries. The large number of small blocks also provides an opportunity to
exploit paraliel pracessing efficiently in the various Multiblock solution algarithme

2. Strategy for Multiblock grid generation

While simple in principle. considerable practical difficulties are encountered when the Multiblock grid for a complete aircraft
configuration is to be considered. Conceptual problems arise where the grid structures from various component geometries
must be integrated. and practical problems arise in handling the “topology” data for the configuration (the specification of
how each block adjoins its neighbours). Further problems arise in specifying detailed control of the grids. and these
problems are compounded when the requirement for systematic analysis of similar geometries is considered.

At first sight, our approach to Multiblock grid generation might seem heretical, in that we attempt to specify and describe
our grid as fully as possible without actually generating it ! However, it is this development of a "geometry independent grid
description” that provides the key to use of Multiblock for general aerodynamic design - allowing systematic generation of
grids for any number of similar configuration geometries. consistently, quickly and without further user interaction.

The process of developing the Multiblock grid description for a new configuration type, starts with a formal definition of the
configuration in terms of how the various component geometries intersect and fit together. A number of issues must then be
addressed -

e definition of the topology of a muitiple-block grid structure. with optimum grid structure for
modelling the fiow over component geometries.

¢ definition of grid density and grid point clustering for the configuration surfaces. and over
key grid control surfaces slicing through the flow domain.

e generation of surface grids for any specific configuration geometry, and generation of
the associated field grid.

The following sections discuss our approach to these modelling issues.

3. Topology Definition

The ability to define a consistent multiple-block topology fundamentally controls whether Muitiblock methods can be applied
to a particular configuration. While endeavouring to develop techniques to facilitate the process of topology definition. it is
therefore essential to maintain complete generality, so as not to preclude the modelling of new types of configuration.

It was reasoned that the initial sketching of a block structure on paper could be formalized in the graphic construction of a
3-d wire-frame schematic of the block structure. This would allow any coherent biock structure to be specified. and the
physically representative nature of the schematic would allow holes or overlap in the block structure to be identified at an
early stage. Analysis routines acting on the schematic could then automatically generate the lists of topology indexing data
required to formally specify the block structure for the various Multiblock calculation methods.

3.1 Graphical Method

initially, a direct graphical method was devised to enabie construction of a multiple-block wire-frame schematic by means
of cursor input to a 3-view representation of the topology (fig. 2). At any time, the cursor can be used to establish a current
x. y or 2 working piane, and the complete ordinates of a point on that plane are then specified by cursor input to the third
orthogonal view window. A single block can be defined by tracing out the position of its 8 vertices. or compound block
buliding utilities can be invoked to perform stacking, splitting or mirroring of multiple-block structures. These utilities in
particular facilitate the generation of well structured topologies.

Areas of locally detailed block structure can then be introduced into the topology by deleting biocks to create a hole, and
mapping in an independently generated detailed sub-topology. In this way for example. the block structure for a single
turbofan engine installation could be generated once, and be inserted into both the inboard and outboard engine locations
In a wing-~fuselage topoiogy.
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Figure 2 : Wire-frame schematic of wing-fuselage topology.
3.2 Automatic Method

Through the experience gained in graphical block decompasition and in control of the associated grids. it has been
possible to devise various rules and strategies for block decomposition. These rules are being progressively implemented in
an automated block decomposition method. that generates a wire-frame schematic to represent the complete field grid
topology. given just a simple block representation of the configuration to be modelied. The configuration is defined in terms
of a collection of cuboidal blocks. positioned in space to represent the relative position of the various geometric
components within the configuration. The grid structure local to each component is considered initially as a "hyper-cube”
structure (fig. 3) with a block of grid sitting on each face of the component to form a complete 0-0 type wrap-around grid
structure. The block of grid on any face can then be collapsed. so for example, if the blocks adjacent to the Xmax, ymin and
ymax faces are collapsed. then the classic C-H grid structure for wings is established. In this way, the appropriate
wrap--around grid structure for any geometric component of arbitrary orientation can be specified : wings, pylons,
fuselages, stores. smoothly closed wing-tips etc.

=

Figure 3 : Initial " hyper-cube’ grid topology. and C-H topology.

The technique has been further generalized to model internal block structures for inlets and through-flow naceiles. Ali these
component grid structures then fit together within a topologically cartesian block matrix. to cover the entire fiow field. The
3-d wire-frame topology schematic that is generated can of course be edited graphically so any iocally compiex grid
structure beyond the current scope of automation can be built into the topology interactively.

This automated block decomposition capability is illustrated by the definition of the complete field grid topology for an
executive jet configuration, with aft-fuselage mounted turbofan engine installation (fig. 4). In this case. a 7-block
representation of the configuration was processed to give a 1697-block grid structure to represent the external flow field
including through-flow nacelle representation (see figs. 13 & 14 for grid and flow solution).
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4. Grid point control along boundaries

The definition of grid point density and clustering in a Multiblock grid, is achieved through the definition of grid point spacing
along key geometric lines on the configuration surface geometry and over selected grid control surfaces slicing through the
field grid. These grid control lines will include all significant geometric features (leading and trailing edges, intersection lines.
top and bottom fuselage centrelines) aliowing control of grid clustering over the configuration surfaces. and will also include
grid control lines hanging between the configuration and the outerboundary, allowing control of grid point spacing in the
direction normal to the configuration surfaces.

It should be noted that the shape of such grid control lines can be extracted from the geometric database for the
configuration, and it is only the form of the distribution of grid points along the control iine that need be specified in the grid
description for the configuration. Again, the philos~~hy of specifying these distributions in a form independent of a specific
geometry has been pursued. so that the grid description can be applied to any number of geometries of the configuration
type in systematic design analysis studies.

It is usefut to consider an example to illustrate the mechanisms used to control grid point alignment and clustering along
grid control lines. Fig. 5 illustrates Muttiblock surface grids for the plane of symmetry and fuselage for a wing-fuselage
configuration. Grids with and without grid point control are shown.
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Figure £ . Fuselage and plane of symmetry surface grids, before and after control of boundary point spacing.

We can describe the features of the controlled grid compared with the default equi-spaced grid. in terms of the positional
alignment of key features. and the clustering or spacing of intermediate grid points :-

® Align grid point on fuselage top centreline with the wing trailing edge.

e Cluster grid points on wing-fuselage intersection line to leading and trailing edges.

e Set cell height normal to wing leading edge equal to grid point spacing around wing leading edge.
e Set clustering on fuselage top centreline to match clustering at trailing edge of wing.

® Reduce clustering at rear of fuselage.

e Align grid points on top outerboundary with the wing trailing edge. and rear of fuselage.

e Set grid point spacing on outerboundary to match that along fuselage centreline.

e Cluster grid points towards fuselage.

...etc.

These forms of grid control are essentially similar to features that might be coded up in the standalone grid generator for a
single-block wing-fuselage grid. or might literally be the actions executed by an engineer generating grids at a CAD
workstation building up a grid interactively around a specific geometry.

We have sought to retain the atiractive features of both approaches, by devising a set of geometry independent standard
format grid point alignment and clustering instructions. These instructions or labels are associated with the grid description
or topology data. A custom interactive CAD tooi has been developed that allows the setting and manipulation of these
labels by graphical picking and movement of grid points. This is closely integrated with the surface grid generation modules
allowing the development of the grid control for a complete configuration in a single interactive session.

When satisfactory grids are achieved, the full grid description is saved. This grid description describes the status of the final
grid control for the configuration (rather than a list of incremental edit instructions) allowing direct generation of grids for any
number of similar configuration geometries, consistently, quickly and without further user interaction.




5. Surface grid generation

The surface grid generator comprises firstly an interpreter that specifies the position of the boundary grid points according
to the actual geometry and the grid control labels, and secondly the surface grid generation modules themselves. Elliptic
p.d.e. grid generation techniques rather than aigebraic or interpolation techniques are used because of the requirements to
cater for singular points and to relax inter-block boundaries (ensuring smoothness of grid across interfaces).

A variety of elliptic solvers have been implemented. both to initialise the surface grids (ref. 3) and to calculate the final high
quality grids. Hybrid solution procedures can be defined for any surface in the topology to allow solution strategy and final
grid control options to be optimised for that surface.

5.1 Thompson method

The primary grid generation method used is that due to Thompson (ref. 4) working in terms of the section/generator
definition of the geometric surfaces, or an x-y type parameterisation of outerboundary and control surfaces :~

a (X + ¢Xp) - BXxn + Y(Xmm + ¥ Xn)=0
a (VL + oY1) - BYn + Y(Ym + ¥ Yn)=0
@ = Xn.Xn + Yn.Yn
B = Xn. Xy + Yn. Yt
Y o= Xt Xg o+ Yo Ve
The ¢ and y grid control terms along boundaries are derived using the Thomas and Middlecoff formulation (ref. 5) to
propagate boundary point spacing through the grid (first term) and with an additional term that is iteratively updated to force
orthogonality of the grid to fixed boundaries. This second term is derived from that reported by Thompson (ref. 6) to
account for the curvature of the family of grid lines approaching the boundary, but calculating the curvature term using the

target grid line siope at the boundary and the slope evaluated at 1/2 a cell out from the wall. This technique has the benefit
of using just one point in the field and has proved very robust :-

it

¢ = (Xgg Xt + Yer . Yer/y + 2(X0. Xnie + Yo . Ymz)
o= (Xan . Xn + Ymm . Va)/y - 2(Xn. X0z + Yn. Yoe)

The effect of this orthogonality term is illustrated for a grid control surface through an -integrated wing-pylon-
nacelle-propeller instaliation (fig. 6).
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Figure 6 : Effect of grid orthogonality control

The formulation of the grid control and the recommendations for interpolating it through the field apply to a single block
curvilinear grid structure. While analogous interpolation techniques can be applied in a multiple-block environment, special
consideration must be given to the formulation of grid control along grid lines approaching singular points, where the local
grid structure is non-cartesian.

In the same way that the grid control is updated to achieve orthogonality to fixed boundaries. so the grid control along lines
approaching singular points can be updated to control the angle between the grid lines at the singuiar point itself (fig. 7). If
full mutual orthogonality is specified for the singular point then an equal angle between grid kines at the singular point will be
achieved.




Figure 7 : Update of grid control at singularities
5.2 Curved surface formulation

The use of a Thompson solver working simply in terms of the section/generator definition of a curved surface, is in general
quite adequate for the majority of geometric components in an aircraft configuration. However because it does not work in
physical space, orthogonality of the grid to fixed boundaries cannot be directly controlled. A further problem can arise in the
case of highly stretched and sheered surface definitions. because the grid inevitably depends to a degree on the detail of
the section/generator definition.

A curved surface formulation of the Thompson solver has been developed within the B.Ae. Multiblock surface grid
generator by Forsey anc Billing of the Aircraft Research Association, a development of their work reported in ref. 7. The
bi-parametric surface patch definition of component geometries is interrogated throughout the iterative solution strategy,
and the surface metrics are used to decouple the surface grids from the detail of surface definition. Expressions analogous
to the Thomas and Middlecoff formulation can be derived for grid controi over curved surtaces, and a similar strategy for
updating the grid control can be applied to achieve orthogonality of the grid to boundaries and to control the grid near
singular points.

The effectiveness of this formulation is illustrated in the generation of surface grids for the fuselage of a wing-fuselage
configuration. Orthogonality of the grid is now achieved around the wing intersection line, and better control of the three
point singularity is achieved on the forward fuselage.
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Curved surface formulation

Figure 8 : Comparison of surface grid generation techniques for fuselage.

6. Systematic analysis of similar geometries

Optimisation of the aerodynamic design of any aircraft configuration requires analysis methods that can be applied
systematically in the study of a range of geometries. For example. in the engine installation studies for civil transport
aircraft, the effect of varying nacelle incidence and position relative to the wing must be assessed, and the section and
camber of the pylon must be controlied to optimise the flow on the undersurface of the wing.

The geometries to be analysed in these parametric studies are essentially similar in form and proportion. however the
detailed profile of any part of the geometry may vary between cases. In Multiblock terms, the same topology. grid structure
and grid point distribution will be required for all these geometries to achieve consistent flow field simulations. The use of a
geometry independent grid description as described earlier ensures this similarity of grid quality between cases, and thus
provides the basis for systematic analysis of any number of geometries of the configuration type.
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The flow chart below illustrates the processes and user interactions involved in using Multiblock for the systematic analysis
of configuration geometries. With the topology database for the configuration type established, there is only minimal user
input required to compiete the flow simulation :-
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Flow chart summarising analysis of a configuration using Multiblock.

7. Applications

The various graphical and automated techniques for topology definition and surface grid generation have been used within
B.Ae. on a number of aircraft projects (fig. 9). The geometric modelling and field grid generation codes developed at
A.R.A. Bedford. and the Multiblock Euler code developed at B.Ae. Bristol are used to complete the Multiblock flow field
analysis for the configurations. The foliowing subsections discuss selected applications in detail.

7.1  Wide-body civil transport aircraft

A number of Multiblock topoiogies have been established in support of B.Ae.'s wide-body civil transport design
programmes. Under-wing turbofan engine installations are modelled using a graphically generated 368-block 300.00C cell
topology (fig. 10). This features C-grid structures around the wing and pylon. and around each section of the nacelle to
form a C-O structure. This nacelle O-grid structure adjoins a cartesian block of grid along the nacelle axis (fig. 11) and the
tubular grid structure exiends upstream and downstream of the nacelle.

Alternative topologies have been generated automatically, that consider the pylon to hang straight below the wing. or to
protrude forward from the wing leading edge. This later topology that is more representative of typical configuration
geometries, avoids the highly sheered grid structure against the pylon side (fig. 12).

The flow solution for all these topologies compares favourably with wind tunnel results. The different pylon grid structures
show differencies in detailed predictions in the vicinity of the pylon. however the effect of pylon grid topology on the gross
aerodynamic interaction effects with the wing are minimal. A number of different nacelle pylon geometries have been
studied using Multiblock alongside comprehensive wind tunnel test programmes.
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7.2 Executive aircraft

The block structure used for modeliing the executive jet was specified automatically (fig. 4), and the resulting 1697-block
1,000.000-cell grid structure is illustrated in figure 13. This features C-grid structures around the section of ali component
geometries - wing, pylon, fin and tail, and around each section of the through-flow-nacelle. As with the civil transport
configuration, the tubular grid structure of the nacelie extends both upstream and downstream to the outerboundaries.

The engine installation for this configuration fies just forward of the wing ftraiing edge so there is a strong aeradynamic
interference effect with the wing. This is illustrated by the contours of surface pressure depicted in figure 14, showing the
area of decelerated flow at the wing root trailing edge, caused by the blockage effect of the nacelle. The detail of flow in
the pylon-nacelle-fuselage gully was also represented by the calculation, and compares favourably with wind-tunnei
results.

it is interesting to note in this configuration, that geometrically the leading edge of the tailplane lies behind the trailing edge
of the nacelle. however because of the sweep and sheering of the grid structure required to model the leading edge of the
fin, the tailplane leading edge is topologically forward of the nacelle trailing edge.

8. Concluding remarks

The combined use of graphical and automated techniques in Multiblock topology definition and surface grid generation, has
facilitated the application of Multiblock to a wide range of complex aircraft configurations. In particular, the use of a
geometry independent grid description specifying the generic grid for a configuration type, has allowed the systematic
analysis of numerous similar geometries in parametric design studies.
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Figure 10 : Surface grids for wide-body civil transport aircraft.
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Figure 14 : Contours of surface pressure for executive aircraft.
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Sumnary

A grid generation {-chnique for curved surfaces and three-dimensional regions is presented. In the
two-dimensional case the set of solutions of the proposed grid generator belongs to the class of quasicon-
formal mappings, and it is shown that under appropriate conditions, it represents unfolded orthogonal
coordinates. The isothermic coordinates are a particular case of this wider family of mappings. In three
dimensions the solution of the mapping system is harmonic. Different kinds of stretching including an
adaptive control of the mesh clustering are presented.

1. Introduction

As numerical algorithms for the solution of the governing equations of fluid-dynamics are progressing,
as well as computer resources, there is an increasing demand to simulate flows over more realistic
aerodynamic shapes. As the complexity of the flow domain increases, the role of mesh generation within
the overall numerical simulation become more important.

The objectives of grid generation are essentially two. Firstly the grid must accurately represent
the geometrical boundaries of the domain. Secondly the niesh distribution should resolve all the scale
lengths of the flowfield solution. This last constraint is accomplished by an appropriate clustering of
the grid points in the parts of the domains where important lowfield gradients are expected. If the
positions of the high-gradient regions are unknown or they evolve on time, the mesh generator and the
flow algorithin should interact in order to adequately redistribute or add grid points.

Numerical grids can be classified into two main categories: unstructured and structured meshes [11.
Unstructured meshes are formed by a set of points and a connection between them, forming triangles in
two dimensions or tetrahedrons in three dimensions. They are very flexible and it is possible to easily
treat multiple-connected domains, however the data handling is quite involved and moreover certain
eflicient numerical algorithms, such as ADI techniques, cannot be implemented.

In body conforming structured grids the connections between points is defined throught the curvi-
linear coordinate system. The most fruitful strategy for generating structured grids in complex config-
urations is the multiblock approach. The physical region is segmented into subregions bounded by six
curved surfaces. In this way each block is chosen to be topologically equivalent to a cuboid and therefore
he mapped into a unit cube in comprtational space without change in topological structure. Cartesian
grids in the nnit cubes in computati mal space map to curvilinear grids in physical space.

By subdividing the flow ‘dumain into a set of blocks, it is possible to distinguish the subregions
or blocks where an accurate grid is necessary because of geometric constraints or because the flow
field developing into the corresponding physical region exhibits important gradients, or hoths. In these
subregions the grid characterized by an appropriate metric, should minimize the geometric-induced
diseretization errors associated with the numerical algorithm employed to solve the flow equations.
When dealing with finite-difference or finite-volume algorithins it is advisable to have smooth grids,
with a limited departure from orthogonality. Moreover a dynamically-adaptive clustering of points in
the tegions where the flow variables display important gradients may be advisable.

The accurate description of the boundaries of the physical domain is a crucial aspect of the nu-
meerical simnlation. Moreover the surface grid generation has a dominant effect on the quality of the
volume grid, In this work a grid generation technique for generating structured grids on curved sur-
faces is presented. In two dimensions, the set of solutions of the proposed grid generator belougs to
the class of quasiconformal mappings [2], and they represent orthogonal curvilinear coordinates. More-
over it is proved that the differential model admits regular continuous solutiuns, without local foldings.
Subsequently the technique is extended to three-dimensional regions, and it is shown that the solution
represents harmonic maps.

2. Curvilinear coordinates in Euclidean spaces

Grid generation of curvilinear coordinates in Euclidean spaces consists in the construction of the coor-
dinate system {£'} corresponding to given metric tensor components, that is in calculat'ng the transfor-
mation 7'(¢’), {z'} being the cartesian frame.

The mapping z' = f(£’) defined on the domain D represents a coordinate transformation if the
function f: D —-D(D,De R") is one-to-one in cach point P€ D and has a local inverse which is one-to-
one on the image of a neighborhood of P. Then if in P¢ D the Jacobian detern-inant J{f) # N.by the




inverse function theorem it follows that there exists in a neighborhood of P a regular coordinate system
without singularities or local foldings. These conditions of local regularity are satisfied by a proper
choice of the metric tensor components g;;. However even if J(f) # 0 at all the points of T, it does not
follows that f is one-to-one on D. In order to have a globally one-to-one mapping on D it is necessary
to appropriately specify the physical domain D, by a one-to-one correspondence g : 3D — 9D.

The knowledge of the metric element ds? = g;;d¢'d¢? at an arbitrary point P of the space, enable us
to image a frame F with origin at this point, with characteristics specified by the components g;;. The
local reconstruction of the space consists in localizing with respect to this frame F, the frame F’ relative
to a point Q contained ia a neighborhood of P. It is then necessary to find a set of equations expressing
the characteristics of 7' in function of the known frame F. Being dF = dz'¢;, by the definition of the
vectors g;, tangent to the axes of F, and of covariant derivative, with I‘:‘j the connection coefficients, we
have

dF = d{'fi 1=1,n (2.1)
dg; = r:“,‘dfjﬁk i,j,k =1,n (2.2)

If the functions g,,;{£*) are continuous, the symbols I'¥; can be expressed as functions of the derivatives
of g;;. Equations (2.1,2.2) solve completely the problem in a neigborhood of P, and form the mapping
system. )

The conditions of integrability for equations (2.1,2.2) require that, for symmetric symbols ]‘{’J = [‘f,-.
the curvature tensor R;, = 0. The functions g;; must satisfy this flatness condition in order to be viewed
as the components of the Euclidean metric. Moreover the solution of the mapping system (2.1,2.2)
represents the curvilinear system specified by the given metric tensor components, and the functions
»'(€') are a local coordinate transformation in a neighborhood of P, if g;; € C! and the determinant of
the matrix g5, ¢ # 0 in P ( regular metric ).

For a regular metri- we have z'(£7) € ("% at least, then the mapping system (2.1,2.2) can be converted
into a system of second-order partial differential equatinns. Differentiating equations (2.1) with respect
to €7, by using equation (2.2), we obtain
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The terms on the left-hand side of equations (2.3) are the components of a symmetric second order
covariant teusor, called the second fundamental form of the map z' = f'(£/) [3]. The trace of this
tensor, obtained by inner multiplication by g,;, is called the tension field of f, and it is formed by the
system of second-order partial differential equations
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System (2.4) is the most general set of equations which can be us~d for grid generation in Euclidean
spaces .
A mapping f is defined harmonic if and only if it is an extremal of the energy integral [4]

dz™ Jz"

a—g-@dfﬂ (2.5)
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It can be shown that equations (2.4) are the Euler-Lagrange equations arising from the varational
problem of the energy integral (2.5), then their solutions z* = f(£’) represent harmonic maps.
The terminology tension field can be explained by a physical picture of a harmonic map f~! :D— D
[4]. Suppose that D is made of rubber and that D is made of marble: the map f~! constrains D to lie
on D. At each point of D there is a vector representing the tension in the rubber at that point. It is
seen that f is harmonic if and only if f~! constrains D to lie on D in a position of elastic equilibrium.
System (2.4) can be recast into the form

1 8

V9 3
and it follows that the basic mapping system is formed by a set of Laplace-Beltrami equations, which
can he viewed as the Euler-Lagrange equations of the variational problem of the integral
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3. Surface orthogonal coordinates

The development of an appropriate grid generation technique for n-dimensional spaces mus: begin by
specifying the n-independent metric components in order to represent a particular curvilinear coordinate
systeni. Their substitution into system (2.4) leads to a specific mapping system which, with a suitable
set of boundary conditions, defines the mapping problem whose solution represents the appropriate



coordinate transformation. As it has been shown previously, the coordinate transformation satisfies the
properties of local regularity if the metric is regular: g;; € ("' and g # 0 in D. An explicit consideration
of the Hatness condition is not necessary. It is a requirement of integrability which is satisfied when the
existence of the coordinate transformation r'(£€7) is proved.

A surface in the Euclidean space is individuated by two coordinates, say ¢* and £2, holding the third
fixed. If in addition the £*-coordinate lines are orthogonal to this surface (g;3 = g2 = 0), system (2.6)
reads, with r = 1,3 and a,3,y = 1,2

1 9 Oz" . C
ﬁ@(\@yaﬂggﬂ) = (K + K;)n (3.1)

where I, and A, are the principal curvatures of the surface, and n'e, the local unit normal vector
forming with the tangent vectors of the surface coordinate lines £ and ¢?, a right-handed frame.

For an orthogonal surface grid {£*} we have g,; = 0, then equations (3.1) take the form, with
F? - gn/gn, & =€and =7,
3 81‘ 6 1 at‘
5 \Fac) tan\Fay ) = (B + Ko’ 3.2
af( ae)*an(pa,,) (K1 + K)o (3.2)

Let {u"} be any arbisrary surface coordinate system such that z'(u®). The metric tensor components
daa of the surface orthogonal coordinates {7} must satisfy the following relations

g2 = FI({»'I)QH , gGiz=gn =0 (3.3)

where the distorsion function F is non-zero and continuously differentiable. If a5 are the metric tensor
components of the u®-coordinates, by the transformation law for tensor components, equations (3.3)
yield the relations

Ou” — saﬁaﬁai (3.4)
8¢ va 8
where a@ = ajyay; - a?, and €°° is the permutation symbol (¢!! = €2 = 0,¢!2 = —¢2! = 1). Equations
12 y q

(3.4) are the generalized Caucky-Riemann equations. The reason for this terminology is that they reduce
to the well known Cauchy-Riemann equations of complex analysis when the surface is flat (aq5 = 845).

System (3.2) with the cartesian coordinates {z'} as dependent variables, can be reduced to a set
of two equations with unknowns the surface coordinates {u®}. By the chain rule for differentiating
composite functions and by equations (3.4), system (3.2) takes the form (5]

? (F‘?,“f)+ >(16) o a ) o 0 _) 251
aE\ € Mm\F ay ] an O€ \ va € O \ \Va (3.

On flat surfaces it is possible to introduce cartesian coordinates {u®}, in this case the rhs of equations

(3.5). as well as of equations (3.2), vanishes. and the system takes the same linear form as the mapping
systemt proposed in ref.|6] to generate orthogonal grids on plane domains. Also in the case of isothermic
coordinates {u”} the rhs of the mapping system (3.5) vanishes. Thus it is possible to conclude that if the
surface is parametrized by isothermic coordinates {u“}, then any other orthogonal coordinate system
can be obtained as solution of a grid generation technique developed for two-dimensional plane domains.
Fquations {3.4) are the Euler- Lagrange equations from the variational problem of the integral

. 1
I, ,/ll‘g“ +gap)dEdy (3.6)
P F

The transformation 1”(€%) for orthogonal coordinates, corresponding to the mapping of a rectangular
domain I debned on the mathematical plane £" onto a domain D, defined on the surface r'(u®},
i« the salrtion of the boundary.value problem formed by the mapping system (3.5) and by a set of
approprinte bonndary conditions. The boundary conditions must ensure that the image of the houndary
AP conaides with the boundary #D on the surface. This correspondence can be obtained by specifving
Dirichlet houndary conditions. However in the present case the condition of orthogonality (3.4) must
hold thiough the boundary 7D, In general Dirichlet boundary conditions are not consistent with these
additional constraints. It is possible to overcome tuis problem by representing the houndary a1 in
parametric form, and to enforce a ‘shape correspondence’ of 3D with the image of 9D, by leaving the
houndary grid points to float along the boundary 3D between the corresponding corner points, in order
to satisfy equations (3.4).

If the mapping u f(€7) represents an allowable mapping, the Jacobian determinant of the
function f D +D must not vanish on D. Orthogonal coordinates satisly in each point of D the

generalized O R equations (3.4), then it follows that the Jacobian determinant reads

du” ? 1 ay, Au du?

‘o » , 3.
Fos A Ay F\/a dn 0y (37

This quadratic form is positive definite, and it vanishes only if L or if both the partial derivatives o:y

are zero. But this cannot be true for a regular solution, then the grid will always be unfolded.

t
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The existence of surface orthogonal grids, solutions of the boundary value problem formed by equa-
tions (3.5) and the boundary-point relocation procedure ensuring the orthogonality at the boundaries,
can be proved as follows. It is known {Rado theorem [7]) that every orientable surface which carries a
metric tensor can be made into a Riemann surface. Then all orientable surfaces with a metric admit a
conformal structure carried by the isothermic coordinates, and by the Koebe-Riemann mapping theorem
for Riemann surfaces it follows that an arbitrary region D of the surface bounded by a simple closed
curve, can be mapped onto a simply-connected plane domain. If the system {u*} is isothermic the rhs of
eq.(3.5) vanishes, and the resulting mapping system can be interpreted as a particular case of the com-
plex Beltrami equation [6]. Then from complex analysis it follows that in this case the transformation
u®(£P) is a regular quasiconformal mapping [2]. Having proved the existence of isothermic coordinates,
the problem of the existence of surface orthogonal coordinates is reduced to the existence of a solution
of the Beltrami equation, which is known to exists. Then it is possible to state a mapping theorem
for quasiconformal mappings analogous to the Riemann theorem for conformal transformation [2]. In
addition, for mappings u® = f(£%) which are quasiconformal on D, it is possible to prove that if the
image of 9D under f is a one-to-one sense-preserving image which consists of a simple closed curve 8D,
then the mapping f defines a global one-to-one correspondence between D and D.

The mapping theorem states that the solution is unique fixing the correspondence of three points
on 8D with the images of three points of 8D. Being interested in quadrilaterals domains D, it follows
that it is not possible to map D on ‘a priori’ specified rectangular regions D. For a given domain D with
conformmal module M = m(D) (7], the conformal modulus of the rectangle D is given by the relation

m(D) = — 3.8
(P) =% (38)
K being the upper bound of the distorsion function F. For conformal mappings F=1, and it follows
that the two regions must have the same conformal module [6]. For a rectangular region, the conformal
module coincides with the side ratio, then it is possible to normalize the region D into the unit square
D and to treat m(D) as an unknown stretching parameter, by adding the relation

. ) F\/gh/y'zzdé_dﬁ (3.9)
I ¥Jomal gindbd
Equation (3.9) is obtained by integrating equations (3.4).

The numerical algorithm consists of two steps. Firstly, for a fixed boundary point distribution
and given conformal module, the finite-difference discretizations of equations (3.5) are solved by an
approximate factorization technique. Then the positions of the boundary points are adjusted in order
to satisfy equations (3.4), and the conformal module is updated by solving equation (3.9).

The control of the grid spacing is obtained by specifying the distorsion function F({,7). For F =1
we have the case of conformal mapping. Aiong a 7-constant coordinate line the differential dn vanishes
then from the definition of metric, it follows that the incremental arc length, ds is given by the relation

ds = Jande (3.10)

Similarly along a £-constant line, denoting by t the arc length, dt = (/gs;dn. From the definition of

distorsion function (3.3) it follows
t
F(&n) == (3.11)
3¢

The functions s¢ and {, represent the distribution of the arc lengths along the coordinate lines with
respect to constant increments of £ and 7, and can be prescribed by any suitable stretching function.
Fig.1 shows an orthogonal grid on a part of an ellipsoide, with stretching of the grid points near the
corners, obtained by specifying the functions s; and ¢, as expouential stretchings with respect to {£{}.
It is worth noting that this grid cannot be interpreted as the composition of a isothermic transformation
and one-dimensional stretchings.

If the attraction line or point is in the interior of the domain, rather than on a boundary, then it is
necessary to specify the stretching functions s, and t, as functions of {u®}. A typical control function
has the form {8} —

8= 1— | 1. 700 | eAldmunl (3.12)

where t and 7(¢) are the unit vectors tangent to the attraction line and normal to the ¢-coordinate line
respectively, d.,.n the shortest distance between the grid point and the attraction line, and A a decay
factor. In figure 2 it is shown the grid on a part of a sphere, with concentration of the grid points with
respect to a fixed point inside the domain.

From the previous considerations it follows that the most straightforward adaptive specification of
the distorsion function F is given by a curve-by-curve approach [9]. Along a n-constant coordinate line
the basic differential statement of the equidistribution law is

w({,n)ds = Cd{ (3.13)

For each given curve, C is a constant. However going from a curve to another curve of the same family,
that constant becomes a function of the transverse variable which governs this progression. Comparing
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equations (3.10) and (3.13), it follows '
N ¢ (3.14)
w
A similar result holds for ,/gs; along ¢-constant coordinate lines. For a given weight function, the
constant (' is determined explicitly by integration of equation (3.13) along the entire curve. The weight
function depends upon the physical space {u®}, moreover the coordinate line ‘moves’ during the iterative
procedure for solving the boundary-value problem; then the value of C' as well as the function g;; must
he updated at each iteration.

The weight function is formed by a positive scalar of the type w = 1+cM, where M is a non-negative
function formed by some error estimate or some normalized gradient of a scalar function representative
of the physical problem. And c is a non-negative constant indicating the level of importance attached
to M. In the present case we used a function M based on the normalized first derivative along the
coordinate line of a scalar test function f.

Figures 3-a,b show the grid around a double-ellipse shape; the grid is clustered along the shock-like
fronts simulating the intersection between the bow shock and the shock originating from the canopy .
It can be noted how the grid is fitting the shocks, with one family of coordinate lines being aligned to
the fronts while the other one is crossing it orthogonally.

4. Three-dimensional curvilinear coordinates

The aim is to develop a grid generation technique for generating structured three-dimensional grids with
smoothness, limited departure from orthogonality and adaptive clustering of the mesh points. Imposing
the ‘constraints of orthogonality g;2 = ¢g13 = ¢g33 = 0 the metric tensor components can be expresseu
follows

95 = Awdis (4.1)
where Ag;) is the value of the diagonal metric tensor component g;;. Introducing the following notation,
with no summation on repeated indeces,

Fuy = Vag" (42)
from the general mapping system (2.6), we obtain the mapping system
a Oz’
=\ Fab" =) =0 =13 4.3
e (o3 ) =0+ (42

being ! = z,2? = y and z® = 2 cartesian coordinates.

As in the case of two-dimensional mappings (5,6}, it is possible to obtain from the metric tensor
constraints (4.1) a set of relations which represent the conditions of integrability for the mapping system.
These conditions can be considered as the extension of the generalized Cauchy-Riemann relations (3.4)
to the three-dimensional case, and they can be expressed in the following form, being g, the tangent
vector to the £,-coordinate line,

5= (@ T (4.4)
91—31;‘(” g2 X g3 .
7= i (3 7) (4.5)
I ki
g2 3F) ga > §
1

3= o (91 X g2 4.6
g3 3E3)(9:X92) (4.6)

As shown in section 2, the solution of system (4.3) represents a harmonic map, and it is an extremal
of the integral (2.7) which in this case reads

1 -
I, = i/v (Fmgn + Fi3)922 + F(s)gsa) dey (4.7)

The bilinear form a{u,v) corresponding to the integral I, satisfies the relation

a(r,,v,) = \ﬂg)g"v,!'J >alv|? (4.8)

for every point {£} ¢ D and for every v € RV, a > 0, being the Beltrami-Laplace operator ellipiic.
Then the hilinear form is coercive, and it follows that for a domain with a smooth, or a piecewise siiooth,
houndary, there exists a unique weak solution of the boundary-value problem formed by system (4.3)
and a suitable set of boundary conditions [10]. The bilinear form (4.8) is symmetric then the solution
minnnizes [,.

Unlike the two-dimensional case, where it was possible to state the condition for the existence of
a regular solution, in three dimensions the metric constraints and the relations (4.4,4.5.4.6) form an
overdetermined system, then the class of regular harmonic mappings is highly restricted.

The control of the grid clustering can be obtained in a similar way as in the case of two-dimensional
orthogonal coordinate. Applying equation (3.10) to the definition of the functions F{,, (4.2), and denoting
with 5t and u the arc lengths along the £-, - and (-coordinate lines respectively, it follows
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thug

Fay =/ — (4.9)
3¢
Similar relations hold for Fi,) and Fy,.

In fig.4 the grid obtained in a region between two ellipsoids is shown. The grid on the boundary
surfaces has been obtained by transfinite interpolation, and kept fixed during the iterative procedure.
The interior grid is smooth and with a limited departure from orthogonality. An improvement of the
present technique could be obtained by leaving the boundary points to move on the boundary surface
in order to satisfy the orthogonality requirements.

5. Conclusions

A grid generation technique for curved surfaces and three-dimensional regions is presented. In two
dimensions it has been proved that the mapping represent unfolded orthogonal coordinates. In three
dimensions the resulting mapping is harmonic. Clustering control including an adaptive curve-by curve
method is presented.
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SUMMARY

The mesh-generation scheme described in this paper nas been designed to cope with
complex geometric and flow features by employing many regular three-dimensional overlying
meshes. Features are classified according to the number of geometric constraints to
which they are subject, and each feature has its own purpose-built mesh. Four different
mesh topologies are required to deal with all possible geometric and flow features. Pro-
gress to date is described and meshes for simple three-dimensional configurations are
shown together with results of some Euler flow calculations.

1 INTRODUCTION

The geometric complexity of aircraft confiqurations presents a major challenge to
those inveolved in generating field meshes upon which the governing flow equations may be
discretized and solved numerically. Accurate representation of all parts of the solid
surfaces of the aircraft and of the boundary conditions that apply there is crucial to
obtaining numerical solutions in which the aircraft designer can have confidence. There
is now broad agreement amongst researchers that alignment of the mesh to all solid sur-
faces is necessary in order to achieve this accuracy. FPor complex configurations, this
requirement alone places numerous constraints upon the mesh and these fregquently result
in meshes that are of poor quality in some parts of the field. Further constraints arise
because the quality of the numerical solution is also strongly dependent upon how well
the mesh represents features other than solid surfaces. These are the features of high~
speed viscous flow which may have a directional bias, such as shock waves and shear
layers, or they may simply be regions of high, but not directionally dominated, flow
gradient. As a result of these difficulties, methods for generating meshes have over
recent years grown considerably in complexity and sophisticationl. Usually, the task of
generating a mesh of even modest quality for a given complex configuration requires con-
siderakle user expertise, much manual intervention and several man-months of work.

Most mesh-generation methods fall into one of three categories: multiblock,
unstructured or overlapping, although the last of these may be called overset or over-
lying. The strategy behind the method? described in this paper was inspired by the
nature of geometric and flow features that occur in high-speed aerodynamics. The method,
known as Feature-Associated Mesh Embedding (FAME), uses many meshes and is of overlapping-
mesh type, yet it is more appropriately described as being an overlying-mesh method. It
contains many regions of embedded mesh and so is at least in part unstructured, yet it
bears little resemblance to so-called unstructured meshes. 1Its main mesh is synthesized
from many sub-meshes called blocks, yet it is not multiblock method. This serves to
indicate how difficult it can sometimes be to categorise a method. Before proceeding to
a more detailed description of the present method and of the results in sections 3 and 4
respectively, we will attempt to clarify some of the issues regarding the nature of
various mesh-generation schemes emphasising where possible the similarities between them.
This will comprise section 2,

2 A CONCILIATORY VIEW OF MESH-GENERATION METHODS

In recent years, there has been an unfortunate trend for views to become polarised
regarding the merits of the three broad approaches to mesh generation., It may therefore
be helpful to spend a while identifying some of the similarities between the approaches.
This task is fraught with difficulties; not least of all those of semantics. For
example, let us firstly consider how many meshes are employed in the various approaches.
Few would dispute that overlapping-mesh methods use several meshes. The common view of
multiblock however is that it consists of one mesh decomposed into several blocks. The
use of these words tends to give the impression that the two approaches are quite dis-
tinct. But are they? If, in one block of a multiblock mesh, we refine (or embed) the
mesh in one or more coordinate directions by (say) a factor of two, so that some mesh
lines terminate at block faces, do we still have one mesh and several blocks, or is it
now more appropriate to consider the finer block to be a separate mesh that overlaps (or
perhaps more appropriately overlies) the original mesh? Certainly the treatment necessary
at such a block face would have much in common with that used in overlapping mesh
schemes. The second problem area concerns use of the words regular and irregular to des-
cribe points in a mesh. Again, few would dispute that unstructured meshes consist
entirely of irreqular points. For a multiblock mesh it is also accepted that so-called
singular points at certain block edges and corners are irreqgular. But what about those
points on a face between two blocks having different orientations; should they not be
irreqular as well? And if they are irreqular, why is a multiblock mesh commonly referred
to as a structured mesh (a term usnally reserved for a mesh consisting entirely of requ-
lar points)?




We begin to try and unravel some of this confusion by defining regularity for each
point of a three-dimensional mesh at which the flow equations (possibly in conjunction
with a boundary condition) are to be discretized. The condition for reqularity concerns
the addressability of neighbouring mesh points, where the number of these is a function
of the size of the stencil (or computational molecule) associated with the discretization
scheme. For a point indexed (I,J,K) to be regular, all the points in physical space that
are included in the stencil must be addressable as (i,j,k) where 1, j and k differ
from I, J and K , respectively, by zero or one (or possibly by 2 for some larger
stencils). 1In other words, all points in the stencil must be adjacent to the point in
question in computing space as well as in physical space. This condition necessarily
excludes points where more than six mesh lines meet. Mesh points that fail to satisfy
this condition are defined as being irregular,

Let us now turn our attention to meshes rather than points and deal with the terms
structured and unstructured. All meshes possess structure, since without it no spatial
relationship would exist between points and so no discretization scheme could be imple-
mented upon them. For so-called unstructured meshes, the structure is defined on a local
basis rather than the simpler. global basis used for structured meshes. Here we avoid
using both these terms for defining types of meshes since they add little to our under-
standing of the properties of a mesh. Instead, we define a mesh to be regular if all
points at which the flow algorithm is to be discretized are regular. An irregular mesh
is defined as one having at least one irregular point. Whilst these definitions follow
logically from those for points, they may conflict with some commonly-held views. As an
example, an O-mesh or a C-mesh around an aerofoil is usually considered to be regular.
However, mesh points on the 'cut line' downstream of the trailing edge are interior in
physical space, but are boundary points in computing space at which the flow equations
are discretized., 1If the mesh is extended across the cut line from both sides through use
of haloes, and the appropriate values of flow variables are set at the halo points, then
the mesh is regular by the above definition, since all points at which the flow algorithm
is discretized are regular. If no halo is used, then points on the cut line fail to sat-
isfy the condition of regularity and a pointer scheme is usually adopted to address
neighbouring points. In this case the mesh is irregular. These two alternative ways of
viewing such meshes will arise later on in discussion of multiblock meshes. A second
example of where our definitions may conflict with commonly~held views is illustrated by
the two-dimensional mesh, sketched in Fig 1, which might be perceived as being irregular.
If at the boundary points (marked by circles) values of flow variables are given, so that
the flow algorithm is discretized only at interior points, then, according to our defini-
tion, the mesh will be regular (for a computational molecule no larger than a nine-point
symmetric stencil). In this case the irregular shape of the region covered by the mesh
does not automatically lead to the mesh being irregular.

It is widely accepted that flow algorithms are more easily implemented on regular
meshes than irregular ones due to their global addressing property. This simplicity is
exploited by advocates of overlapping meshes where each mesh is usually regular or can be
made regular through the use of halces, but they pay the penalty of having to construct
possibly complicated and potentially inaccurate interpolation procedures in order to
transfer flow data between meshes. With the new definition to hand, we may therefore
state that overlapping mesh methods use several overlapping regular meshes.

We now show how multiblock mesh methods can be classified in two completely differ-
ent ways according to whether the data structure at block boundaries is of halo type or
pointer type. When using the halo approach, the data array for discretizing the flow
equations at interior points of a block is expanded so that the discretization scheme may
be applied at block-boundary points as well. Where, as is usual, each point interior to
a block is rogulur. wui prociduir o .ewd€els tlock-boundary points regular, but now the
‘expanded block' is bigger and indeed it overlaps neighbouring blocks. Through using the
halo procedure, multiblock is therefore conceptually the same as the overlapping mesh
approach and so can be defined as consisting of several overlapping regular meshes. Of
course there are differences in detail between the two. If at block boundaries, mesh
lines are continuous (this necessarily means no embedding) and changes in the slope of
mesh lines are small, then points may be taken as coincident in the overlap region so
avoiding the need for interpolation. The second approach to data structure at the block
boundaries of a multiblock scheme is to use a pointer system. 1In using this, the block is
not expanded and so the irregularity of points on the block boundary is accepted and the
pointer system is used to address points in neighbouring blocks. In this case multiblock
may be defined as consisting of one irregular mesh.

To complete the definition of the various approaches to mesh generation, we may
state that so-called unstructured-mesh methods consist of one irreqgular mesh. The
observation that this is identical to the definition of multiblock methods when a pointer
system is adopted may cause some consternation, since the two approaches are usually
viewed as quite distinct. The difference in fact is one of degree (albeit a significant
degree) in that all points in an unstructured-method are irregular whereas only a two-
dimensional subset of mesh points is irreqular in multiblock. The unstructured-mesh
approach could therefore be viewed as a multiblock scheme (using pointers) with only one
cell in each block, so removing all points interior to a block, which in turn results in
there being no regular points.

In trying to break down some of the conceptual barriers between the three approaches,
we have used the two interpretations of multiblock to link it to overlapping and
unstructured schemes. Why then should multiblock alone have two interpretations? The
main reason is that the two possible data structures at block boundaries (which led to the
two interpretations) are equally viable alternatives for a multiblock scheme where the




number of blocks is small compared with the number of mesh points. 1If the number of
(regular) interior points per block became very small (resulting in many more blocks),
the pointer scheme would be preferable to the use of haloes. This explains why for the
unstructured mesh approach (with no interior regular points) a pointer scheme is employed
and in consequence why it is considered as a single irregular mesh. It would, of course,
be possible in principle to adopt a halo scheme for the unstructured-mesh approach there-
by considering it to be a set of overlapping meshes. However this would be most inef-
ficient since the number of meshes would equal the number of points!

Finally then, what are the prospects for an alternative interpretation of
overlapping-mesh methods. Here of course mesh overlap is necessary in order to cover the
whole of space because of the discontinuity in position and orientation between meshes.
We do not have to construct haloes since they already exist (implicitly) via the overlap,
and so our interpretation given earlier (several regular meshes) is natural. 1In order to
apply the alternative interpretation, we would have to generate a set of irregular points
(to replace the overlap region) which link the neighbouring regular meshes, thereby
creating one irregular mesh. This (irregular) interpretation of overlapping meshes
appears quite plausible. (It should be noted however that it gives rise to a mesh that
is actually different from that obtained with the conventional interpretation. This con-
trasts with the position for multiblock where the two interpretations are purely concep-
tual.) The alternative (irregular) approach for overlapping meshes has indeed been
adopted, but only (as far as the authors are aware) by treating all field points as
irregular”, so ignoring the regularity of the majority of the points.

It appears that the argument has gone full circle. The conclusion of our concili-
atory view of the three types of mesh-generation scheme appears to be that they are
indeed similar if one chooses to interpret them as such. The interpretations more com-
monly adopted seem to accentuate differences.

This brief review has avoided a discussion of the merits of the various approaches
to mesh-generation. This omission is deliberate, for such a discussion would have to be
based upon many detailed aspects of the actual methods under development by CFD research
groups. Some of the issues that would have to be addressed in such a discussion are
given below:

{a) What are the factors affecting mesh quality - cell skewness, mesh expansion
ratio, cell aspect ratio, mesh smoothness, appropriate mesh density for flow
gradients - are there more?

(b) In multiblock methods with a high level of continuity at block boundaries, how
do the constraints on the mesh impact on mesh quality; is such a level of
continuity necessary?

(c) How good is the control of cell 'aspect ratio' in unstructured-mesh methods;
how suitable are they for dealing with regions of strong directionality?

(d) In overlapping-mesh methods, how much accuracy is lost through interpolation;
how complex is the program bookkeeping?

(e) How easily can each method be extended to include solution adaption?

(f) How much manual intervantion is needed to get the required mesh quality; how
expert does the user have to be?

It is beyond the scope of this paper to answer these questions. However some of the
issues raised in this section should assist the reader in understanding the philosophy
and strategy behind the FAME method reported here.

3 FEATURE-ASSOCIATED MESH EMBEDDING

The long-term aim of this work2 is to unify the treatment of geometric and flow
features through a flexible approach to mesh~generation, although in its current state of
development only geometric features are treated. The corner-stone of the method is a
classification of features according to the number of directional constraints to which
they are subject. The strategy for generating high-quality meshes is then built upon
four key ideas. Firstly, in order to minimise constraints upon meshes, many meshes are
employed, with one mesh associated with each feature. Secondly, the spatial extent of
each feature-associated mesh is limited to the neighbourhood of the feature itself.
Thirdly, a main (or background) mesh underlies all other meshes and covers the whole field
of interest; it is not aligned to any of the geometric surfaces. Finally, comparability
of mesh densities where overlap occurs (namely, where flow data is interpolated between
meshes) is achieved primarily through the use of multi-level embedding on the main mesh.

We consider four types of feature; these are classifi:d according to the number, N,
of directional constraints associated with the feature and are denoted as being of type N,
N =20, 1, 2, 3. Features of type 1 are associated with surfaces, those of type 2 with
lines and those of type 3 with points. Type-0 features have no directional constraints
associated with them. It is asserted that each feature merits its own mesh having a top-
ology that is appropriate to the feature. We refer to meshes that are associated with
features of type N as being type-N meshes. Each of these types is now discussed in a
little more detail starting with type 1.




‘'Features such as body geometry, shock waves and vortex sheets in inviscid flow are
associated with surfaces in space; others, such as shear layers in high Reynolds-number
flow are associated with thin regions adjacent to surfaces (which may be solid surfaces
or surfaces within the fluid). All such features are characterised by the direction of
the normal to the assoclated surface and accordingly these are denoted as being of type 1.
Each type-l1 feature merits its own mesh which should be orientated according to the
orientation of the associated surface. Where, for example, the surface is a solid bound-
ary, this simplifies the task of satisfying the solid-surface boundary conditions. Each
type-1 mesh could thereby be constructed with two coordinate directions in the surface
and one normal to it. The distribution of mesh points within each mesh of type-1 is not
a major consideration here; it could be prescribed by any of the methods currently used
for conventional meshes or it could be subject to solution adaption. The novel aspect of
the present approach concerns the spatial extent of each type-1 mesh in the direction
normal to the associated surface. The only requirement is that the feature is entirely
covered by the mesh. 1In inviscid flows, all type-1 features are simply surfaces and so
unless there are good reasons for doing otherwise, meshes of type-1 need only extend as
many intervals away from the surface as is necessary to define the flow-algorithm stencil,
as sketched in Fig 2 for an extent of two mesh intervals.

For features such as thin shear layers, the need to resolve very high flow gradients
normal to the associated surface will require us to use a mesh with many small intervals
normal to the surface. Nevertheless, the extent in physical space again need only cover
the feature, see Fig 3.

We define features of type-2 to be those associated with lines, examples of which
may be the line of intersection of two surfaces or a line across which the surface normal
is discontinuocus. (Whilst we may sometimes view these as distinct in aerodynamic terms,
geometrically they are one and the same.) Whereas features of type-1 are associated with
a single surface and characterised by the surface normal, features of type-2 are associ-
ated with two surfaces and are characterised by the normals to each surface at their line
of intersection. We refer to type-2 features as edge lines {(or edges) and consider this
term to embrace all lines of intersection of two surfaces irrespective of their sense
(either 'convex' like a wing trailing edge or 'concave' like a typical wing-fuselage
junctior line). The two surfaces concerned may be associated with any geometric or flow
features of type-1. We assert here that each feature of type-2 merits its own feature-
associated mesh. Such meshes are necessary because each type-1 mesh is designed to cope
with only a single surface (one directional constraint). Therefore, close to an edge
line where two surfaces intersect (two directional constraints), neither of the type-1
meshes associated with each surface will be suitable., Type-2 meshes, however, are des-
igned specifically for edge lines. In conventional mesh-generation schemes, edges are
treated in a variety of different ways according to the sign and magnitude of the discon-
tinuity in the normal. We may view these treatments two-dimensionally by considering
planes normal to edge lines and by characterising the edge by an angle ¢ ,

-7 < 8 < n , which measures the discontinuity in the surface normal, with 6 taking posi-
tive values for edges of convex type and negative for those of concave type. If we denote
by € a positive angle that is small compared with = , we may identify three different
edge-line topologies in common use as shown in Fig 4 for Iel < e , |[otn/2| < ¢ and
lstr| < ¢ respectively. Whilst these topologies are perfectly adequate for the geo-
metries concerned, their use presents difficulties where 6 varies significantly along
the edge as for example in the case of a wing-fuselage junction where topologies (a) and
(b) may occur along the junction line. Here we propose that each type-2 feature irres-
pective of the sign and magnitude of 8 should have its own local mesh of O-H topology
which takes the form of a cylindrical-polar-type mesh with its axis running along the
edge line. As with meshes of type-l, type-2 meshes need extend only a limited distance
into the field. Proposed meshes of types 1 and 2 are sketched for a wing trailing edge
(in two dimensions) in Fig 5.

We define features of type-3 to be those associated with points, an example of which
is the point of intersection of three surfaces, such as the wing upper surface, the wing
lower surface and the fuselage surface where the wing has a sharp trailing edge. Type-3
features may also exist at isolated points on an otherwise smooth surface (at for example
the nose of a pointed body of revolution). As with types 1 and 2, type-3 features merit
their own feature-associated mesh. The topology of type-3 meshes, being appropriate to a
point, should have 0-0 structure and so take the form of a spherical-polar-type mesh
with the origin of the mesh at the point concerned. The radial extent of each type-3
mesh can (as with the other meshes) be limited to the extent of the feature, which in the
case of inviscid flow merely needs to be sufficient to allow the definition of the flow
algorithm stencil.

Regions of the flow lying away from solid surfaces, shear layers and shock waves are
comprised of features of type O. Such regions could alternatively be termed 'feature-
less' and indeed, since we classify features according to the number of directional con-
straints associated with them, this term is not inappropriate. However the numerical
treatment employed for type-O features is crucial to the accuracy of the flow calculation
because these features may include regions of high (but not directionally dominated) flow
gradient. Since type-O features do not have directional constraints associated with them,
type-O meshes can simply be of rectangular-Cartesian type. Further, the absence of any
strong directionality in flow gradients means that all mesh cells may be taken as cubes.

A patch of mesh consisting of identically-sized cubes constitutes a type-O mesh. Vari-
ation of the size of these cells across the field is achieved through mesh embedding by a
factor of two in all coordinate directions so ensuring that all cells remain as cubes, as
sketched in Fig 6 for two dimensions. A type-0 mesh of given fineness will, therefore,
be embedded within a coarser type-O mesh. The set of all type-O meshes covers the whole
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field of interest, including regions interior to solid components, and is considered to
constitute the main (or background) mesh. This main mesh is synthesized starting with
the coarsest type-O_mesh and proceeding to finer type-O meshes through an automatic
embedding algorithm2 that may be driven by a variety of mechanisms. The only mechanism
employed so far in the present work is that arising from the requirement that, where
meshes overlap, their densities should be comparable. Thus for a smooth body, for which
we have just one type-1 mesh, the embedding algorithm generates type-O meshes of succes-
sively higher density in the region of overlap with the type-1 mesh until the densities
are comparable to within a factor of two as shown in Fig 7. (The embedding algorithm
could alternatively be driven by the magnitude of local flow gradients, thus providing
solution adaption, and it is intended to investigate this mechanism in the next phase of
the work.) In order to rationalize the main-mesh data structure, each type-O mesh is
itself synthesized from a set of compgtationally—identical sub-mesh units called blocks.
Each block is a cube consisting of n mesh cells, where n is usually taken to be 4,
6 or 8.

In section 2 it was noted that FAME is best viewed as being an overlying mesh
method rather than an overlapping one. The reason for this is central to the philosophy
of the method. The coarsest type-O0 mesh covers the whole field and, as far as data
structure is concerned, it does not have a 'hole' cut in it where a finexr type-0 mesh
is embedded within it. It underTies all finer type-O meshes. Thus each type-O mesh may
be considered to overlie all coarser type-O meshes. This data structure was considered
to be relatively simple to construct and it is immediately amenable to the implementation
of a main-mesh multigrid scheme. A hierarchy of type~0 meshes therefore exists with the
coarsest mesh at the bottom and the finest at the top. Relative position within this
hierarchy determines which mesh takes precedence and in consequence the order in which
computed flow data on one mesh replaces those from another. Meshes of type-1, having
been constructed as appropriate to the regions occupied by type-1 features, overlie the
main mesh; they are located above type-O meshes in the hierarchy and flow data computed
on them replaces those from the main mesh. In turn, meshes of type-2 overlie those of
type-1 (and in consequence all those of type-0), and are located further up the hierarchy

‘than those of type-1. Flow data computed on type-2 meshes replaces those computed ou all

meshes lower down the hierarchy. Finally, type-3 meshes head the hierarchy.

It should be noted that, in the context of this method, the statements 'mesh A
overlies mesh B' and 'mesh A is embedded within mesh B'are considered to be equivalent.
The manner in which flow data is transferred (using linear interpolation) from one mesh
to another is the same whether the transfer is between two meshes of type-O or between
those of types 1, 2 or 3 and those of type O; it differs only in detail. For the former
data transfer, the interpolation is simple because all type-0 meshes have the same
orientation, whereas for the latter general three-dimensional interpolation is necessary.

Finally, we can now classify FAME according to the discussion of section 2. All
meshes of types 1, 2 and 3 are regular overlying meshes by construction. Whilst the main
mesh with its multilevel embedding appears irregular, the data structire that we adopt
ensures that this is not so. Our smallest mesh unit, from which the type-0O meshes are
synthesized, is a cube-shaped block. There are a large number of these and they are com-
putationally identical irrespective of their size in physical space. We treat each block
as a regular mesh by expanding its data array to form a halo. (The computational iden-
tity of these blocks enables us to take as the 'vector length' the (large) number of
blocks rather than the (small) number of points in any coordinate direction.) Accord-
ingly, the main mesh is considered to be a set of regular (and indeed uniform) overlying
meshes,

4 DEVELOPMENT STAGES OF FAME AND CURRENT RESULTS

The authors' search for a new mesh generation strategy for complex configurations
and flows began in 1985. By the following year, a pilot method? in two dimensions had
been developed which employed a main mesh, with a rudimentary form of embedding, together
with a surface-orientated overlying mesh constructed by dropping normals to the surface
from certain main-mesh points. This study served to indicate how not to approach the
problem, and as a result the present strategy began to take shape towards the end of 1986.
A two-dimengional code, consisting of mesh generator and Euler flow solver, was developed
and tested by early 1987. The main and surface-aligned meshes generated by this code for
a three-element aerofoil are shown in Fig 8, A close-up of the region covered by the
slat and leading edge of the main aerofoil is shown in Fig 9. Meshes for the case of two
NACA 0012 aerofoils of different sizes, one above the other, are shown for vertical sep-
arations of 0.25 and 0.5 (upper aerofoil chord = 1.0} in Figs 10 and 11 respectively.
This configuration has been used as a test case in two dimensions for mesh generation
aspects of store release. All the meshes shown in Figs 7 to 11 were generated automatic-
ally from given point distributions on the component surfaces and from three simple con-
trol parameters; no user expertise was needed.

Surfaces in three dimensions become lines in two dimensions, edge lines become
peints, and so only features of types 1 and 2 exist in two dimensions. In two respects,
the treatment of surface-aligned meshes in the two-dimensional version of FAME lacks the
full generality intended for the three-dimensional work. Firstly, a surface-aligned
C-mesh was used for each aerofoil so that the aerofoil surface (type-1) and the trailing
edge (type-2) were accommodated by a single mesh. This runs counter to the general
strategy given in section 3 since one mesh (the C-mesh) deals with two features.
Secondly, the extent of each C-mesh normal to the aerofoil surface was limited to just
one mesh interval. Whilst this had little impact upon the mesh-generation scheme, it
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limited the flow algorithm stencil to just two points normal to the surface, so prevent-
ing full second-order accuracy from being achieved. Despite the use of a C-mesh and the
partial second-order accuracy, results from the two-dimensicnal code showed that the
strategy and methodology of FAME was very promising in that high quality meshes for multi-
element aerofoils could be generated automatically.

Work on the development of FAME in three dimensions began later in 1987, and is still con-
tinuing. For this development, the principle of 'one mesh for one feature' is being
strictly adhered to. This means, however, that type-2 meshes are required in order to
treat a configuration as simple as an isolated wing with a sharp trailing edge. At the
present time, the mesh-generation code and an Euler flow solver have been developed and
tested only for meshes of types 0 and 1, so that we are currently restricted to smooth, non-
intersecting bodies, but there may be any number of these. The incorporation of type-2
meshes into the mesh-generation and flow codes is currently in progress. The flexibility
afforded by FAME has enabled us to treat the far-field boundary of the computing region
as a type-1 feature and accordingly we give it its own type-1 mesh. This has the advan-
tage that the position and shape of the far-field boundary can, where necessary, be
changed whilst leaving the near-to-mid-field meshes unaltered. Further, various forms of
far-field boundary-condition treatments can be investigated on a purpose-built, boundary-
aligned mesh quite independently of the rest of the solution algorithm. Type-1 meshes are
constructed without the limitation on field penetration present in two dimensions in that
they may extend more than one mesh interval away from the body surface. For flow calcula-
tions using Euler solvers, the number of intervals normal to the body surface is usually
taken to be two, so permitting use of a stencil with three points in the normal direction
and in consequence allowing for full second-order accuracy. Navier-Stokes flow solvers
can be implemented on type-1 meshes since these meshes can now extend many intervals nor-
mal to the surface and may be constructed with very high aspect-ratio cells close to the
surface.

The_Euler method employed on all meshes uses a first-order upwind finite-difference
algorithm” which is made second-order accurate through use of a deferred-correction
schemed. It is ideally suited to use within the complex embedded structure of FAME since
it has a compact, seven-point symmetric stencil in three dimensions. This Euler algorithm
(but limited to partial second-order accuracy as mentioned earlier) was used as the flow-
solution method in the two-dimensional version of FAME. Results of Euler flow calcula-
tions for the three-element aerofoil of Figs 8 and 9 have been reported elsewhere<.

Development and testing in three dimensions of the flow algorithm and of the mesh-
generation scheme have been taking place in parallel. Both methods contain many new
aspects that have needed careful evaluation and checking. In consequence, we have con-
centrated on simple ellipsoidal shapes and indeed much of the testing has been carried
out for flow past a sphere. Since, however, the main mesh in FAME is not aligned to the
configuration surface, the full generality of embedded block structure and of three-
dimensional interpolation is necessary for a body as simple as a sphere. Type-1 meshes
(around the sphere and the far-field boundary) are of spherical-polar type. The finite-
difference Euler algorithm415 on these meshes has, however, been formulated to allow for
general three-dimensional, non-orthogonal meshes. Visualization of the field meshes in
three dimensions presents difficulties because of the embedded structure of the main
mesh. However, inspection of field meshes for quality is far less necessary in FAME than
in most other methods since the scope for generating meshes of poor quality (in respect
of stretching and skewness) is very limited. Type-1 meshes are by construction nearly
orthogonal with direct control over mesh stretching. Type-0 meshes are orthogonal and
locally uniform with strict 'factor-of-two' subdivision between embedded levels. This is
checked automatically by the embedding algorithm itself within the mesh~generation code.

Mesh visualization in certain two-dimensional sections through the field is, how-
ever, straightforward, if rather unspectacular for a configuration as simple as a sphere.
An example is shown in Fig 12. Fig 13 summarises results of flow calculations for the
sphere at a Mach number of 0.4 using various versions of the Euler algorithms4,5., These
results are presented in the form of a plot of peak suction on the sphere surface against
1/n2 , where there are 2n surface mesh intervals in each meridian plane; values of n
of 24, 325 48 and 64 are used. Curves are shown for results using the first-order upwind
algorithm?®, the deferred-correction second-order accurate scheme?® and the partially
second-order accurate scheme that was used in the two-dimensional method. The deferred-
correction scheme is clearly shown to have second-order behaviour with increase in mesh
fineness since the curve through the four poeints is virtually a straight line.

Meshes have been generated for an idealized, two-component, wing-store configuration
where each component is modelled as an ellipsoid. The wing has a root chord of unity, a
span of 4.0 and a thickness of 0.2. 1Its surface is defined by the ellipsoid

)+ ) - ) -

The store has a circular cross section of radius 0.05 and a fineness ratio of 6:1. The
surface of the store is defined by the ellipsoid
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so that it is located underneath the starboard wing at mid-semi span. Fig 14 shows
type-0 and type-1 meshes in the plane x = 0 . A close-up of the meshes in the same
plane in the vicinity of the store is shown in Fig 15. The overl p between the two
type-1l neshes presents no problems, since, at its outer edge, each mesh excharges flow
dat with the main mesh. Finally, Fiqg 16 shows the meshes in the 'wing plane', 2z =0
for the starboard wing. Due to current memory and cpu limitations, flow calculations
have not as yet been run for this configuration.

5 CONCLUDING REMARKS

Feature-associated mesh embedding should develop into a fieasinle method for gener-
ating high-quality meshes for complex aircraft configurations. Development and testing
of the mesh-generation and flow codes is a slow and painstaking process, because maximum
generality is being built in at all stages. However, when the full package is complete,
configuration components may be modified, added or removed without the need for global
changes of mesh topology. The approach may be particularly useful for configurations
having components in relative motion, such as those associated with store release.

REFERENCES

1 Sengqupta, S., Hauser, J., Eiseman, P.R. and Thomwvson, J.R., (editors), Numerical Grid
Generation in Computational Fluid Mechanics '88, pub Pineridae Press Ltd, 1988.

2 Albone, C.M., "An approach to geometric and flow complexity using feature-associated
mesh embedding (FAME): strategy and first results", in Numerical Methods ror Fluid
Dynamics IIT, edited by K.W. Morton and M.J. Baines, pub Oxford Universitv Press, 1988,

3 Mavriplis, 'D.J., "Adaptive mesh generation for viscous flows using Delaunay triangula-
tion", in Numerical Grid Generation in Computational Fluid Mechanics '88, pub Pineridage
Press Ltd, 1988,

4 Albone, C.M., "A second-order accurate scheme for the Euler eyuations by deferred
correction of a first-order upwind algorithm", RAE Technical Report 88061, 1988,

5 Chakravarthy, S.R., Anderson, D.A., and Salas, M.D., "The split-coefficient matrix
method for hyperbolic systems of gas-dynamic equations", AIAA Paper 80-0268, 1980.

Copyright
®

Controller HMSO London
1983




13-%

Fig 2 Type—1 surface mesh ior inviscid flows

Fig 1 A regular mesh of irregular shape Fig 3 Type—1 surface mesh for

viscous flows
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Fig 9 Blow up of Fig 8 in the region of the slat
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Fig 10 Meshes for two NACA 0012 aerofoils: separation
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Fig 11 Meshes for two NACA 0012 aerofoils: separation = 0.5

| ,_
|
! +
| |
,~.ur - u,k - A e
[ t . * - .
G i
H i ;
e ee veeegaeagaes et s =
SEeeEia Hhst b st
_ NOSEODE BEDE SN DN Vil ,.
! L
. ,Jmﬂm‘ TR
EESE H9 ¢S s gl R
- \ul -t =AY .w\ i\_ - - ﬁ - - ,. RN rﬁ‘ﬂ.’u —
1 . CECE ]
(i .<.|L | _411
. . ; T&ﬁ““,.

Fig 12 Meshes for a sphere: centreline plane
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Fig 15 Blow up of Fig 14 in the region of the sfore

Fig 16 Meshes for an idealized wing—store: plane z =
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ON THE WAY TO AN INTEGRATED MESH GENERATION SYSTEM
FOR INDUSTRIAL APPLICATIONS
by
W.Seibert, W Fritz, S.Leicher
DORNIER-LUFTFAHRT GMBH
Computational Fiuid Dynamics Group
Postfach 1420, D-7980 Friedrichshafen
Federal Republic of West-Germany

SUMMARY

The main features of some specialized batch modules. which have been deveioped recently to meet the requirements of a gnd
generation for complex configurations. are described in brief One modute 1s a combination of an algebraic grid generator for the deter-
mination of a surface grid and the far field boundary. and an hyperbolic grid generator for the sectionwise calculation of the corresponding
orthogonal internal grid lines. Two other modules are concentrated on solution adaptive grids - either using algebraic redistribution pro-
portional to the curvature of a typical flow filed describing function. or by solving elliptical partial differential equations resulting from the
transformation of the Poisson equation from the physical space into the computational space Adaption of the grid to pressure gradients
and to the total pressure loss s done by replacing the source terms.

The first part of the paper however is the description of the graphic-interactive program-system INGRID. which already comprises several
standard techniques to generate composite voiume grids around arbitrary complex configurations, and which has the potential to become
an integrated system to match the demands for a general productive mesh generation method

As application exampies several grids are shown. illustrating actual probiems of external aircraft aerodynamics ground-vehicle aero-
dynamics and of interna! pipe flow.

1. INTRODUCTION

Within the |ast years the pretenstons concerning the productivity of procedures for the numerical simulation of flow processes raised
more and more A high accuracy of the results is expected. the processed configurations should correspond to the rea! geometries with
idealizations as small as possible. Especially the use of methods based on the Navier-Stokes’s equations require a high resolution of
details within the discretization of the computing model

Besides those facts the operational area of the procedures is widened permanentty. There is still the classical problem of the sim-
uiation of flows around aircrafts. but investigations of the flow behaviour at road vehicles and vessels are accomplished as welt. Also the
industriaily very interesting field of internat flows. 1.e. flow through machine parts, tube branches pipe systems or power plants is accessed
more and more by numerical investigations

This development is supported by increasing computer capacities and performances The average number of computing points for
one investigation could be Increased clearly - however the resulting computing times remained further acceptable As a resume it can
be said. that the computational simulation of flow processes of all kinds has taken an essential role within industrial research and devel-
opment

However, there is one non-negligtble subtask. which is still solved unsatisfactory up to now It is the geometry processing and the
gnd generation. which becomes necessary before a computational analysis Particularly by the increased abilities of the simulation pro-
grams the weaknesses of the so-called preprocessing has become obvious. lLacking flexibility concerning changes of geometry types as
well as the awkward handling of predominantly batch operating grid generators causes a disproportionately high time expenditure An
abundance of mere or less user-friendly grid generators with different degrees of automation have been deveioped they aiso work still
satisfactorily in practice. but only as tong as no substantal changes are made within the task At the latest then indeed. the 1nput and the
program iself has to be modified Time consuming reprogramming and testing become nccessary Adoilionally to this modifications the
conventional approach of batch programs in combination with plot procedures does no longer represent the state of the art anyway De-
finition of parameters. generation of grids. their visualization and their inspection are single steps within this approach onliy their iterative
application to a problem can tead to a finally acceptable computing model With respect to a fast relhiable and highly flexible mesh gen-
eration process the necessity of an integrated system comprising some proved modules but offering also the advantages of the interactive
technique 15 ObviOUS

A first syccess In this direction arose with the establishment of the program package INGRID (INteractive GRIDgeneration system,
for the generation of blockstructured volume grids During its apphication in combination with an (arbitrary, commercial CAD-System there
are no restricions with resp. ' 1o the geometry to be processed Grids for internal and external flows for Euler- and Navier-Stokes-
simulations therewrth can be be generated visualized controlled and modified within shortest times During construction of the program
system. some already proven batch modules have been used However, as the system is still open with respect to the coupling of further
routines also the two methods which are still under deveiopment and which are presentec at the end of this report could be connected
to the interactive operation mode

The system INGRID at the present time 1s aliready a tool to be used productively for the generation of biockstructured gnds for fieid
methods Long term aim 1s the completion to a flexible and versatile supplementary aid. which integrates the diverse common procedures
for the necessary preprocessing to only one interactive and user-friendly package The modules described in chapters 3 and 4 up to now
a-e stilt batch operated - but within the near future they should also become integrated into the interactive environment

Indeed all of the presented grid examples were used fo calculate flow solutions. but meshes generated the same way could be used
aiso for the predection of radar backscattering Either surface gnids according the concept of the physical optics or the volume grids for
the solution of Maxwell’s equations {electrodynamics) [1]

2. THE INTERACTIVE APPROACH

The base of any industrial flow simulation 1s either a projected or an aliready existing geometrical shape “Computer Aided Design”
-systems nowadays are instalted in most of the companies where geometrical modeis have to be treated with respect to any development
and/or manufacturing Graphic terminais or even workstations came along with those CAD-systems. and a lot of engineers became fa-
mthar with the interactive techniques to communicate with commercial application programs via messages and menus Additional software
libraries became available. which enabled a programmer to write his own custom tailored application interface. where specialized algo-
rithms are combined with the abiiity to create display. and interact with graphics data Then it was at the time to rearrange the traditionat
batch onented gnd generation procedures according to this popular working method The advantages are obvious within a dialog and
under permanent visual conirol step by step (and even backwards) a basic geometry can be upgraded to a final network Several proven
algorithms are available and can be selected and variations can be tned to find the best possible solution Generation parameters may
be modified rapidly to study the mesh behaviour Routines to check the mesh quality can be used. so that possible mistakes become ob-
vious immediately but with the chance to be corrected without delay As an inteligent workstation 1s used. generation algorithms. data
admirustration and interaction conirol are running on a host-computer while visualization and transformation are downloaded to local
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processors, thus saving computing time and accelerating the process. In addition, the comprehensive possibilities of 3D-representation
of such a modern workstation, supplies picture sequences, which some years ago were only possible with complex trick film techniques.
The overall cycles of geometry changes, pararieter variations, mesh control and visualization, formeriy taking weeks with previous meth-
ods, are compressed 10 several interactive sessions within days. This technique “allows the user to concentrate on the geometry of the
problem rather than on the mechanics of the processing programs” as Eiseman and Erliebacher [2] remarked.

21 Preparation of the Geometry

The entire procedure of a gridgeneration, independently of the supplementary aids with which it is accomplished, can be divided into
two sub-tasks: geometry-preparation and grid-generation. The first part leads to a configuration description by means of suitabie ge-
ometrical elements. Since for pure geometrical tasks several interactive program systems are already existing and available within the
industry, such a softwarepackage and an appropriate installation can be used. The starting point should be a sufficiently detailed geometry
model of the desired configuration available within such a system. As an exampie a CADAM wire frame mode! of the coming Domier utility
aircraft Do 328 is shown in fig.1.

Figure /. Some sections of a Do 328 CADAM wireframe model description

Using the standard functionality of the CAD-system. the shape and location of the far-field boundary is defined and the block de-
composition s carned out. Fig.2 shows the far-field and the overall blockstructure of the example geometry

Figure 2. Far fleld boundary and posstble block arrangement
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The representation of the body surface is to be subdivided and arranged according to the chosen block-topology. Fig.3 gives a more
detailed view of a prepared configuration.

e I

Figure 3. Do 328 - prepared surface representation and some blockboundaries

The result of the first step within the CAD-system and a subsequent interface program is a datafile containing the so called base
geometry. This is a collection of geometry elements - more exactly: points and point-sequences - giving the necessary information to
provide a sufficient description of the overall geometry. Sufficient in that context means that the interpolation procedure based on a cubic
spline formulation and used during grid generation should be able to meet the actual geometry shape within acceptable tolerances

2.2  Grid generation using INGRID

For the second step the user interface application program INGRID containing the descretizati~n algorithms 1s activated First of all
from the displayed base geometry the elements which should form an active block have to be selected The urue: of zizking edges Im-
phicitly assigns the counter directions |. J and K Optionally at biock faces additional surface lines can be specified - this is necessary es-
pecially for all biock sides located next to twice curved body surfaces. After the logical connections between all elements of one block are
completed. point quantities and up to twelve distribution functions can be specified. All edge elements are treated one after the other
The redistributed nodes are visualized immed:ately and can be withdrawn if the result is not satisfying During generation for the very first
block of a configuration ali these parameters have to be specified by the user - respectively selected out of the possibilities offered within
pop-up menus. While treating subsequent blocks. faces of neighbouring and aillready existing meshes might be calied on to the screen
and counters and distributior functions can be transferred - ensuring consistent meshing between adjacent biccks When the node dis-
tributton for all edges 1s complete. the block surface grid generation is executed. Finally. after specifying the desired type of integer plane.
the voiume grid generatton 1s performed for the active block and results are shown plane by plane

While executing the step by step generation for edges. faces and internal counter planes forming the volume-grid. at each time the
momentary results might be either accepted. optionally be modified or withdrawn Additional routines optionally can be selected. for
tracing coordinates and integer counters for local and global grid modifications and to hunt up ‘'negative volumes™ ARer the active block
has been completed the base geometry is recalled and the procedure restarts with the selection of the geometry elements for the next
block All these acttons have to be repeated until all blocks of a complete configuration are processecd Fig 4 shows the final mesh at the
aircrafts body surface
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Figure 4. Do 328 - final mesh distribution at the swface

2.3 Implemented Generation Techniques

The basic routines of the program system INGRID are partly common algorithms, proved to be versatile during countiess apphications
within batch oriented procedures, and partly new programmed modules which were tested and modified within interactive sessions. The
core of the generation part is a procedure for point redistribution along curves in space: similar procedures are in industrial use to produce
the necessary data for NC-milling. Starting with a number of base points, first of all 8 parameterized cubic spiine 1s evaluated, its formu-
lation allowing only pure interpolation without any smoothing. After that, the generation of intermediate points along those splines is done
according 1o a desired one-dimensional distribution As there are no restrictions in this method any imaginable point distribution can be
achieved



-

The application of this procedure to biock edges leads to the desired grid points. For block surfaces the same procedure is applied
along all given surface-lines and at least with two sweeps into the different counting directions. In the case of complicated boundaries one
ore two repetitions might become necessary until the changes within the distribution become equal to zero. Finally again the same
respline procedure is repeated in the various space directions until the volume discretization is complete. But as biock faces and internal
integer planes are usually bounded by three or four edges, where in a general case each might have its own distribution function, some
blending must be done for the interior. Taking into account the influences of the distributions at the boundary curves is done by a repetitive
mapping procedure
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Generation of grid points a: block surfaces Mapping procedure 10 evaluate internal distribution functions

(2 sweeps,)

Consider a four-sided physical region whose sides are f1, f2, g1 and g2 (fig.6a). ut. u2. v1 and v2 represent the normalized parametric
distribution functions of the four sides (fig.6b). As the respline procedure needs an initial solution, for the first sweep (in the f-direction) a
linear connection between opposite boundaries is assumed. its direction has to be specified interactively to pay attention to the actual
shape' The caiculation of the line-intersection within the parametric space {c) leads 10 a weighted distribution function u. which can be
applied to respline the initial solution within the physical space (d). For the second sweep (in the g-direction). using the same steps. the
weighted distribution function v 1s calculated (g) and applied in the transverse direction (h)

The procedure of node redistribution within integer pianes can be applied repetitively for arbitrary plane types {l.J. K=const} The
more complex the block shape is. the larger the numper of sweeps will be necessary to achieve a satisfactory solution

The method of Thompson et a! [3]. wherein the grid 1s derived from the solution of a set of inhomogeneous Lapiace equations s also
implemented within INGRID and can be used opi-onally to do mesh modifications. During applications for various geometric shapes. 1t
turned out that resulits of the redistribution method could be achieved faster and were often more suitable than the comparable solutions
of the differential equation method Fig.7 gives two exampies with different boundary shapes

\

Figure 7. Results of node redistribution (a) and differential equation method ' b

The left hand side shows the solution of the redistribution method achieved with 1 and 3 sweeps, while the right hand side shows the grid
generated by solving the Laplace equations In both cases the interior of the redistributed mesh 1s oriented much closer to the given dis-
tnbution at the boundary curves Without the necessity to adjust control functions, as required if the Poisson eguation system is used the
redistribution method immediately results in a smooth mesh. keeping the boundary characteristics proportional throughout the whole field
An additional and essential advantage of the method Is its ability to apply it directly to arbitrary body shapes As it works along real
3D-curves. keeping given shapes all the time, this simple and fast method represents an attractive alternative to the much more compli-
cated formutations of the specified surfaces according to Thomas (4] or the Gaussian surfaces as described by Warsi [5]

2.4  INGRID Environment

During INGRID applications all the graphic support an intelligent workstation being able to give. can be used Local real-time ani-
mation of the wire-frame representation and selective “show/noshow”-procedures of grid planes enable the u:.=r. 1o get and to keep con-
tinuously a complete overview of all details of a spatial network. The program development as well as the examples presented here were
carried out on a SPECTRAGRAPHICS 1500 workstation connected to an I1BM 3080 host computer The pase geometries were established
by means of the commercial software packages CADAM and CATIA. The mesh generator with the user interface apphcation program IN-
GRID uses the device-specific soft- and firmware called PRISM for graphic access.




2.5 INGRID Application Examples

Fig.8a indicates the block architecture of a local O-mesh imbedded in a global H-structure for a wing with pylon and load. In 8b the
grid on the surface is shown as well as within the plane of symmetry. The appropriate computational analysis was done to investigate in-
creases of the drag due to local transonic effects.

Figwre 8. Local O-mesh imbedded into a global H-structwre for wing with pylon and load

Fig.8 gives a glimpse of a composite grid arrangement for Navier-Stokes analysis of a car configuration. Blocks with very high resolution
are located within the expected boundary layer region surrounded by a giobal H-structured mesh
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Figure 9. Composite grid for Navier-Stokes analysis of a road vehicle

Fig 10 shows an internal flow problem - a segment bend pierced by a valve lifter (a) gives the original surface mode! and (b) the base-
geometry, both done with CATIA. Views (c) and (d) show some details of the generated grid in the interior and on the surface of the con-
figuration
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Figure 10. Segment bend pierced by a valve lifter - geometry model and generated grid

More interactively generated examples are given in references [6] and [7].

3. COMBINED ALGEBRAIC-HYPERBOLIC GRID GENERATION

For the aerothermodynamic flowfieid analysis of reentry vehicles within the Mach number region 2 to 20 a special approach has been
developed. At the present time this procedure is still batch operated, but because of its modular structure it is well suitable to become
integrated soon into the interactive environment of INGRID.

The process features the steps as described in the following. First of all based on a geometry definition a surface grid is determined
by the apphcation of an algebraic grid generator. A sectionwise point distribution is generated. where the grid density is adjusted ac-
cording to the local curvature of the geometry. Determination of the farfield shape is done by prescribing a fower and an upper angle of
inclination within the plane of symmetry. Those values are adapted to the Mach number and the angie of attack in order to optimize the
gnd without wasting points in regions of low interest. The cross section shape of the farfield is that of a general ellipse, where the ratio
of the main to the sub-diagonal also depends upon the freestream conditions. After predefinition of such a farfield, it is treated with the
same algebraic grid generation process as the surface. The internal grid points are caiculated using a 2-d hyperbolic algorithm. which 1s
appiied sectionwise The resulting orthogonal grids are especially desirable for complex shaped cross section contours. As for hyperbolic
marching the farfield distance can only roughly be prescribed, however not a specific shape, the farfieid definition of the algebraic gnd
generator is used The intersection of the radial hyperbolic gridlines with that boundary I1s deiermined and the internal hyperbolic grid 1s
then redistributed by a local adaption within each section Either an affine radiai stretching according to the hyperbolic grid can be used
whereby the grid height of the first ceit 1s kept Or a geometrical stretching function with a fixed initial grid size can be applied A pro-
cedure generating a smooth transition from an internal algebraic to the full hyperbolic grid is aiso avaiiable Within an application for the
Hermes configuration. additiona! stretching functions are used. 1o ensure nearly equidistant distributions in the region of the front shock
wave Other input parameters allow to avoid crossovers in concave regions or for example to even out the gnd size In tangentiat directions
in prescrnibed regions  This sectionwise application of the hyperbolic grid generater as well as the reshaping of the internal gng in some
cases mav cause minor grid irregularittes between neighbouring sections Therefor subsequently a 2-d and/or 3-¢ Poission solver or a
3-0 smoothing operator can be applied [8]
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4, ADAPTIVE GRIDS

It is well known, that the accuracy of a numerical solution depends on the fineness of the mesh - the finer the grid, the more accurate
the numerical solution will be. The presence of large gradients causes the error to be large in the the approximation of the derivatives
Especially in the presence of shock waves, more artificial diffusion must be added to retain adequate smootheness of a solution. That is
the reason for an urgent need for schemes which are able to resc: se those large gradients without the necessity of adding additional grid
points. An adaptive scheme moves given grid points to regions of high gradients in cases when the locations of these gradients are not
known a priori. An adaptive method reduces also the total number of grid points required 1o achieve a given accuracy. Adaptive grid
generation schemes can run in partnership with a flow code and dynamically adapt the grid to the evolving flow field. which is known as
dynamic adaption, or they can adapt one grid which will remain invariant for the entire calculation, which is called the static adaption

4.1 GRID ADAPTION BY ALGEBRAIC REDISTRIBUTION

The first approach described her .z, is based on an algebraic generation scheme (see for example [11]. [13]). The redistribution of
grid points along arbitrarily shaped lines according to the curvature of a sensor function can be used for the static adaption of 2-D grids
and also for the field adaption of 3-D grids. It is assumed that the redistribution of grid points shouid be based on the distribution of the
curvature of a typical, the flow fieid describing function u (for example: surface pressure distribution). The curvature is obtained at each
point / by the central difference approximation

_ 2 Ugr — 4, Ui—U,_, 2
a"”’“n3{ S + 0(h%. ny—hy) @1

using forward and backward difference operators. For sake of simplicity we may set a, = a, and a, = a,_,. By nomalizing the curvature with
the constant step size h,

Xy — X4
= 4.
h=N=7 42)
we obtain a weighted measure k, of curvature at each point:
hl
k=24 43)
with
hy=x,~X_4. (44)
in order to damp extreme values in curvature and to increase the interva! of influence, a new measure of curvature.
2n
a i=n+1_..N=-n, (4.5)

Nk
S L
=0

1s Introduced for inner points. At boundaries a similar but one-sided formula is used. In all cases described here. a value of n = 1 was
used. resulting in smoothing three points

The transformation function 1s finally obtained from the integration of alpha

!

S = Za/, (4.6)

=2

with 5. = 0 One notices that the transformation function Six) has its maximum siope where the curvature of u(x,) has its maximum curva-
ture and its mimmum slope where the curvature of u(xi1s also minimal The table of values obtained from S = S(x,) can also be used In
its inverse form x = x(S,) By dividing the interval

1 [
Sy =7J‘ adx 47
Xe

into N -1 subintervals

=l =23 N

.
SO =Sy

one can obtain through interpolation the new distribution x = x(S*) In order to guarantee monotonicity this interpolation must 